Mechanism-based inactivation of caspases by the apoptotic suppressor p35

被引:31
作者
Riedl, SJ [1 ]
Renatus, M [1 ]
Snipas, SJ [1 ]
Salvesen, GS [1 ]
机构
[1] Burnham Inst, Program Apoptosis & Cell Death Res, La Jolla, CA 92037 USA
关键词
D O I
10.1021/bi010574w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Caspases play a crucial role in the ability of animal cells to kill themselves by apoptosis. Caspase activity is regulated in vivo by members of three distinct protease inhibitor families, one of which-p35-has so far only been found in baculoviruses. P35 has previously been shown to rapidly form essentially irreversible complexes with its target caspases in a process that is accompanied by peptide bond cleavage. To determine the protease-inhibitory pathway utilized by this very selective protease inhibitor, we have analyzed the thermodynamic and kinetic stability of the protein. We show that the conformation of p35 is stabilized following cleavage within its reactive site loop. An inactive catalytic mutant of caspase 3 is bound by p35, but much less avidly than the wild-type enzyme, indicating that the protease catalytic nucleophile is required for stable complex formation. The inhibited protease is trapped as a covalent adduct, most likely with its catalytic Cys esterified to the carbonyl carbon of the scissile peptide bond. Together these data reveal that p35 is a mechanism-based inactivator that has adopted an inhibitory device reminiscent of the widely distributed serpin family, despite a complete lack of sequence or structural homology.
引用
收藏
页码:13274 / 13280
页数:7
相关论文
共 51 条
[1]   EFFECT OF SINGLE AMINO-ACID REPLACEMENTS ON THE THERMODYNAMICS OF THE REACTIVE SITE PEPTIDE-BOND HYDROLYSIS IN OVOMUCOID 3RD DOMAIN [J].
ARDELT, W ;
LASKOWSKI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 220 (04) :1041-1053
[2]   INTERACTION OF ALPHA2-MACROGLOBULIN WITH PROTEINASES - CHARACTERISTICS AND SPECIFICITY OF REACTION, AND A HYPOTHESIS CONCERNING ITS MOLECULAR MECHANISM [J].
BARRETT, AJ ;
STARKEY, PM .
BIOCHEMICAL JOURNAL, 1973, 133 (04) :709-&
[3]   Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease [J].
Bertin, J ;
Mendrysa, SM ;
LaCount, DJ ;
Gaur, S ;
Krebs, JF ;
Armstrong, RC ;
Tomaselli, KJ ;
Friesen, PD .
JOURNAL OF VIROLOGY, 1996, 70 (09) :6251-6259
[4]   Structural basis of the endoproteinase-protein inhibitor interaction [J].
Bode, W ;
Huber, R .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2000, 1477 (1-2) :241-252
[5]   NATURAL PROTEIN PROTEINASE-INHIBITORS AND THEIR INTERACTION WITH PROTEINASES [J].
BODE, W ;
HUBER, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 204 (02) :433-451
[6]   INHIBITION OF ICE FAMILY PROTEASES BY BACULOVIRUS ANTIAPOPTOTIC PROTEIN P35 [J].
BUMP, NJ ;
HACKETT, M ;
HUGUNIN, M ;
SESHAGIRI, S ;
BRADY, K ;
CHEN, P ;
FERENZ, C ;
FRANKLIN, S ;
GHAYUR, T ;
LI, P ;
LICARI, P ;
MANKOVICH, J ;
SHI, LF ;
GREENBERG, AH ;
MILLER, LK ;
WONG, WW .
SCIENCE, 1995, 269 (5232) :1885-1888
[7]   ANALYSIS OF PROTEIN AND PEPTIDE MIXTURES - EVALUATION OF 3 SODIUM DODECYL SULFATE-POLYACRYLAMIDE GEL-ELECTROPHORESIS BUFFER SYSTEMS [J].
BURY, AF .
JOURNAL OF CHROMATOGRAPHY, 1981, 213 (03) :491-500
[8]   Structural basis of caspase-7 inhibition by XIAP [J].
Chai, JJ ;
Shiozaki, E ;
Srinivasula, SM ;
Wu, Q ;
Dataa, P ;
Alnemri, ES ;
Shi, YG .
CELL, 2001, 104 (05) :769-780
[9]   CONTROL OF PROGRAMMED CELL-DEATH BY THE BACULOVIRUS GENES P35 AND IAP [J].
CLEM, RJ ;
MILLER, LK .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (08) :5212-5222
[10]   Caspases: the executioners of apoptosis [J].
Cohen, GM .
BIOCHEMICAL JOURNAL, 1997, 326 :1-16