Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site

被引:63
作者
Grundner, C [1 ]
Ng, HL [1 ]
Alber, T [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1016/j.str.2005.07.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intracellular pathogenic bacteria manipulate host signal transduction pathways to facilitate infection. Mycobacterium tuberculosis protein tyrosine phosphatases (PTPs) PtpA and PtpB are thought to be secreted into host cells and interfere with unidentified signals. To illuminate the mechanisms of regulation and substrate recognition, we determined the 1.7 angstrom resolution crystal structure of PtpB in complex with the product phosphate. The protein adopts a simplified PTP fold, which combines features of the conventional PTPs and dual-specificity phosphatases. PtpB shows two unusual elaborations-a disordered, acidic loop and a flexible, two-helix lid that covers the active site-that are specific to mycobacterial orthologs. Biochemical studies suggest that substrate mimicry in the lid may protect the phosphatase from oxidative inactivation. The insertion and deletion of large structural elements in PtpB suggest that, outside the active site module, the PTP family is under unusual selective pressure that promotes changes in overall structure.
引用
收藏
页码:1625 / 1634
页数:10
相关论文
共 41 条
[1]   Protein tyrosine phosphatases in the human genome [J].
Alonso, A ;
Sasin, J ;
Bottini, N ;
Friedberg, I ;
Friedberg, I ;
Osterman, A ;
Godzik, A ;
Hunter, T ;
Dixon, J ;
Mustelin, T .
CELL, 2004, 117 (06) :699-711
[2]   The structure and mechanism of protein phosphatases: Insights into catalysis and regulation [J].
Barford, D ;
Das, AK ;
Egloff, MP .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :133-164
[3]   The role of cysteine residues as redox-sensitive regulatory switches [J].
Barford, D .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (06) :679-686
[4]   A MALACHITE GREEN PROCEDURE FOR ORTHO-PHOSPHATE DETERMINATION AND ITS USE IN ALKALINE PHOSPHATASE-BASED ENZYME-IMMUNOASSAY [J].
BAYKOV, AA ;
EVTUSHENKO, OA ;
AVAEVA, SM .
ANALYTICAL BIOCHEMISTRY, 1988, 171 (02) :266-270
[5]   Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization [J].
Bilwes, AM ;
denHertog, J ;
Hunter, T ;
Noel, JP .
NATURE, 1996, 382 (6591) :555-559
[6]   Identification of p130(Cas) as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions [J].
Black, DS ;
Bliska, JB .
EMBO JOURNAL, 1997, 16 (10) :2730-2744
[7]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[8]   The Yersinia YSC-YOP 'type III' weaponry [J].
Cornelis, GR .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (10) :742-752
[9]   MUSCLE: multiple sequence alignment with high accuracy and high throughput [J].
Edgar, RC .
NUCLEIC ACIDS RESEARCH, 2004, 32 (05) :1792-1797
[10]   Development of ''substrate-trapping'' mutants to identify physiological substrates of protein tyrosine phosphatases [J].
Flint, AJ ;
Tiganis, T ;
Barford, D ;
Tonks, NK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1680-1685