Conformational preferences and vibrational frequency distributions of short peptides in relation to multidimensional infrared spectroscopy

被引:103
作者
Gnanakaran, S [1 ]
Hochstrasser, RM [1 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
关键词
D O I
10.1021/ja011088z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular dynamics simulations of the structural distributions and the associated amide-I vibrational modes are carried out for dialanine peptide in water and carbon tetrachloride. The various manifestations in nonlinear-infrared spectroscopic experiments of the distributions of conformations of solvated dialanine are examined. The two-dimensional infrared (2D-IR) spectrum of dialanine exhibits the coupling between the amide oscillators and the correlations of the frequency fluctuations. An internally hydrogen-bonded conformation exists in CCl4 but not in H2O where two externally hydrogen-bonded forms are preferred. Simulations of solvated dialanine show how the 2D-IR spectra expose the underlying structural distributions and dynamics that are not deducible from linear-infrared spectra. In H2O the 2D-IR shows cross-peaks from large coupling in the alpha -helical conformer and an elongated higher frequency diagonal peak, reflecting the broader distribution of structures for the more flexible acetyl end. In CCl4, the computed cross-peak portion of the 2D-IR shows evidence of two amide-I transitions in the high-frequency region which are not apparent from the diagonal peak profile. The vibrational frequency inhomogeneity of the amide-I band arises from fluctuations of the instantaneous normal modes of these conformers rather than the shifts induced by hydrogen bonding. The simulation shows that there are correlations between fluctuations of the acetyl and amino end frequencies in H2O that arise from mechanical coupling and not from hydrogen bonding at the two ends of the molecule. The angular relationships between the two amide units which also show up in 2D-IR were computed, and spectral manifestations of them are discussed. The simulations also permit a calculation of the rate of energy transfer from one side of the molecule to the other. From these calculations, 2D-IR spectroscopy in conjunction with simulations is seen to be a promising tool for determining dynamics of structure changes in dipeptides.
引用
收藏
页码:12886 / 12898
页数:13
相关论文
共 60 条
[1]   The effect of isotopic substitution and detailed balance on the infrared spectroscopy of water: A combined time correlation function and instantaneous normal mode analysis [J].
Ahlborn, H ;
Space, B ;
Moore, PB .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (18) :8083-8088
[2]   A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water [J].
Ahlborn, H ;
Ji, XD ;
Space, B ;
Moore, PB .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (23) :10622-10632
[3]   MICROFOLDING - CONFORMATIONAL PROBABILITY MAP FOR THE ALANINE DIPEPTIDE IN WATER FROM MOLECULAR-DYNAMICS SIMULATIONS [J].
ANDERSON, AG ;
HERMANS, J .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1988, 3 (04) :262-265
[4]   Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes [J].
Asplund, MC ;
Zanni, MT ;
Hochstrasser, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8219-8224
[5]   Reaction coordinates of biomolecular isomerization [J].
Bolhuis, PG ;
Dellago, C ;
Chandler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5877-5882
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   HARMONIC-ANALYSIS OF LARGE SYSTEMS .1. METHODOLOGY [J].
BROOKS, BR ;
JANEZIC, D ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1522-1542
[8]   SIMULATIONS OF PEPTIDE CONFORMATIONAL DYNAMICS AND THERMODYNAMICS [J].
BROOKS, CL ;
CASE, DA .
CHEMICAL REVIEWS, 1993, 93 (07) :2487-2502
[9]  
CUNG MT, 1972, ANN CHIM FRANCE, V7, P183
[10]   The anharmonic features of the short-time dynamics of fluids: The time evolution and mixing of instantaneous normal modes [J].
David, EF ;
Stratt, RM .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (04) :1375-1390