Intelligent thermoresponsive polymeric micelles for targeted drug delivery

被引:55
作者
Nakayama, M [1 ]
Okano, T [1 ]
机构
[1] Tokyo Womens Med Univ, Inst Adv Biomed Engn & Sci, Shinjuku Ku, Tokyo 1628666, Japan
关键词
thermoresponsive polymer; poly(N-isopropylacrylamide); block copolymer; polymeric micelle; EPR effect; cancer chemotherapy; multi-targeting system;
D O I
10.1016/S1773-2247(06)50005-X
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Nano-order sized supramolecular assemblies called polymeric micelles possess two-separated phase structure; a hydrated hydrophilic outer shell provides their highly structural stabilities in aqueous media and a hydrophobic inner cort acts as a drug loading container. First anticancer polymeric micelle carrier systems showed a selective accumulation at solid tumor tissues and a subsequent in vivo anticancer activity. Recently, stimuli-responsive polymeric micelles have been designed as the next generation of micelle systems for application in selective drug release at target sites by physical and/or chemical signals. We suggested a concept using thermoresponsive polymeric micelle drug carriers in conjunction with local heating systems for multi-targeting therapeutic systems to achieve effective cancer chemotherapy with fewer side effects. The present review article mainly focuses on strategy and molecular design of thermoresponsive polymeric micelles and discusses their potential for an intelligent targeted drug carrier system with some examples containing anti-cancer drugs.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 110 条
[1]   Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles:: effects of acyl chain length [J].
Adams, ML ;
Kwon, GS .
JOURNAL OF CONTROLLED RELEASE, 2003, 87 (1-3) :23-32
[2]   TEMPERATURE-RESPONSIVE INTERPENETRATING POLYMER NETWORKS CONSTRUCTED WITH POLY(ACRYLIC ACID) AND POLY(N,N-DIMETHYLACRYLAMIDE) [J].
AOKI, T ;
KAWASHIMA, M ;
KATONO, H ;
SANUI, K ;
OGATA, N ;
OKANO, T ;
SAKURAI, Y .
MACROMOLECULES, 1994, 27 (04) :947-952
[3]  
Aoshima S, 2000, J POLYM SCI POL CHEM, V38, P3962, DOI 10.1002/1099-0518(20001101)38:21<3962::AID-POLA130>3.0.CO
[4]  
2-9
[5]   Novel bifunctional polymer with reactivity and temperature sensitivity [J].
Aoyagi, T ;
Ebara, M ;
Sakai, K ;
Sakurai, Y ;
Okano, T .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (01) :101-110
[6]   Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy [J].
Bae, Y ;
Nishiyama, N ;
Fukushima, S ;
Koyama, H ;
Yasuhiro, M ;
Kataoka, K .
BIOCONJUGATE CHEMISTRY, 2005, 16 (01) :122-130
[7]   TEMPERATURE-DEPENDENCE OF SWELLING OF CROSS-LINKED POLY(N,N'-ALKYL SUBSTITUTED ACRYLAMIDES) IN WATER [J].
BAE, YH ;
OKANO, T ;
KIM, SW .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1990, 28 (06) :923-936
[8]   SWELLING EQUILIBRIA FOR WEAKLY IONIZABLE, TEMPERATURE-SENSITIVE HYDROGELS [J].
BELTRAN, S ;
BAKER, JP ;
HOOPER, HH ;
BLANCH, HW ;
PRAUSNITZ, JM .
MACROMOLECULES, 1991, 24 (02) :549-551
[9]   Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair [J].
Betre, H ;
Setton, LA ;
Meyer, DE ;
Chilkoti, A .
BIOMACROMOLECULES, 2002, 3 (05) :910-916
[10]   Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers [J].
Cammas, S ;
Suzuki, K ;
Sone, C ;
Sakurai, Y ;
Kataoka, K ;
Okano, T .
JOURNAL OF CONTROLLED RELEASE, 1997, 48 (2-3) :157-164