Layered Gradient Nonwovens of In Situ Crosslinked Electrospun Collagenous Nanofibers Used as Modular Scaffold Systems for Soft Tissue Regeneration

被引:40
作者
Angarano, Marco [1 ,2 ]
Schulz, Simon [3 ]
Fabritius, Martin [1 ,2 ]
Vogt, Robert [1 ,2 ]
Steinberg, Thorsten [3 ]
Tomakidi, Pascal [3 ]
Friedrich, Christian [1 ,2 ]
Muelhaupt, Rolf [1 ,2 ]
机构
[1] Univ Freiburg, Freiburg Mat Res Ctr FMF, D-79104 Freiburg, Germany
[2] Univ Freiburg, Inst Macromol Chem, D-79104 Freiburg, Germany
[3] Univ Hosp Freiburg, Sch Dent, Dept Oral Biotechnol, D-79106 Freiburg, Germany
关键词
electrospinning; gelatin; crosslinking; tissue engineering; nanocomposite; POLY(LACTIC ACID); CELL-GROWTH; GELATIN; FIBERS; FABRICATION; DIFFERENTIATION; PROLIFERATION; MATRICES; LINKING; WORK;
D O I
10.1002/adfm.201202816
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In a versatile modular scaffold system, gradient nonwovens of in situ crosslinked gelatin nanofibers (CGN), fabricated by reactive electrospinning, are laminated with perforated layers and nonwovens of thermoplastic non-crosslinked biodegradable polyesters. The addition of glyoxal to a gelatin solution in a non-toxic solvent mixture consisting of acetic acid, ethyl acetate, and water (5:3:2 w/w/w) enables the in situ crosslinking of gelatin nanofibers during electrospinning. The use of this fluorine-free crosslinking system eliminates the need of post-treatment crosslinking and purification steps typical for conventional CGN scaffolds. The slowly progressing crosslinking of the dissolved gelatin in the presence of glyoxal increases the viscosity of the gelatin solution during electrospinning so that the average diameter of the crosslinked gelatin nanofibers gradually increases from 90 to 680 nm. During the subsequent lamination process, alternating layers of CGN and polycaprolactone (PCL) nonwovens, produced by 3D microextrusion of micrometer-sized PCL fibers, are bonded together upon heating above the PCL melting temperature. In contrast to the water-soluble gelatin nanofibers and the comparatively weak CGN, the CGN/PCL/CGN layered biocomposites are water-resistant and very robust. In such modular scaffold systems, strength, biodegradation rate, and biological functions can be controlled by varying the type, composition, fiber diameter, porosity, number, and sequence of the individual layers. The CGN/PCL multilayer biocomposites can be cut into any desired scaffold shape and attached to tissue by surgical sutures in order to suit the needs of individual patients.
引用
收藏
页码:3277 / 3285
页数:9
相关论文
共 49 条
[1]   Progress in the Field of Electrospinning for Tissue Engineering Applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
ADVANCED MATERIALS, 2009, 21 (32-33) :3343-3351
[2]   Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials [J].
Al-Ahmad, A. ;
Wiedmann-Al-Ahmad, M. ;
Carvalho, C. ;
Lang, M. ;
Follo, M. ;
Braun, G. ;
Wittmer, A. ;
Muelhaupt, R. ;
Hellwig, E. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 87A (04) :933-943
[3]   Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates [J].
Badami, AS ;
Kreke, MR ;
Thompson, MS ;
Riffle, JS ;
Goldstein, AS .
BIOMATERIALS, 2006, 27 (04) :596-606
[4]   Biomanufacturing for tissue engineering: Present and future trends [J].
Bartolo, P. J. ;
Chua, C. K. ;
Almeida, H. A. ;
Chou, S. M. ;
Lim, A. S. C. .
VIRTUAL AND PHYSICAL PROTOTYPING, 2009, 4 (04) :203-216
[5]   THE DETERMINATION OF EPSILON-AMINO GROUPS IN SOLUBLE AND POORLY SOLUBLE PROTEINACEOUS MATERIALS BY A SPECTROPHOTOMETRIC METHOD USING TRINITROBENZENESULFONIC ACID [J].
BUBNIS, WA ;
OFNER, CM .
ANALYTICAL BIOCHEMISTRY, 1992, 207 (01) :129-133
[6]   Electrospinning of type I collagen and PCL nanofibers using acetic acid [J].
Chakrapani, V. Yogeshwar ;
Gnanamani, A. ;
Giridev, V. R. ;
Madhusoothanan, M. ;
Sekaran, G. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 125 (04) :3221-3227
[7]   Selective laser sintering of functionally graded tissue scaffolds [J].
Chua, C. K. ;
Leong, K. F. ;
Sudarmadji, N. ;
Liu, M. J. J. ;
Chou, S. M. .
MRS BULLETIN, 2011, 36 (12) :1006-1014
[8]   In Situ Growth Kinetics of Hydroxyapatite on Electrospun Poly(DL-lactide) Fibers with Gelatin Grafted [J].
Cui, Wenguo ;
Li, Xiaohong ;
Chen, Jiangang ;
Zhou, Shaobing ;
Weng, Jie .
CRYSTAL GROWTH & DESIGN, 2008, 8 (12) :4576-4582
[9]   Electrospinning: A fascinating method for the preparation of ultrathin fibres [J].
Greiner, Andreas ;
Wendorff, Joachim H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (30) :5670-5703
[10]  
Gurr M., 2012, RAPID PROTOTYPING, P77