Arsenate reductase II. Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems

被引:94
作者
Radabaugh, TR
Sampayo-Reyes, A
Zakharyan, RA
Aposhian, HV
机构
[1] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[2] IMSS, Ctr Invest Biomed Noreste, Monterrey, Nuevo Leon, Mexico
关键词
D O I
10.1021/tx0101853
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
An arsenate reductase has been partially purified from human liver using ion exchange, molecular exclusion, hydroxyapatite chromatography, preparative isoelectric focusing, and electrophoresis. When SDS-beta-mercaptoethanol-PAGE was performed on the most purified fraction, two bands were obtained. One of these bands was a 34 kDa protein. Each band was excised from the gel and sequenced by LC-MS/MS, and sequest analyses were performed against the OWL database SWISS-PROT with PIR. Mass spectra analysis matched the 34 kDa protein of interest with human purine nucleoside phosphorylase (PNP). The peptide fragments equal to 40.1% of the total protein were 100% identical to the corresponding regions of the human purine nucleoside phosphorylase. Reduction of arsenate in the purine nucleoside arsenolysis reaction required both PNP and dihydrolipoic acid (DHLP). The PNP rate of reduction of arsenate with the reducing agents GSH or ascorbic acid was negligible compared to that with the naturally occurring dithiol DHLP and synthetic dithiols such as BAL (British anti-lewisite), DMPS (2,3-dimereapto-1-propanesulfonate), or DTT (alpha-dithiothreltol). The arsenite production reaction of thymidine phosphorylase had approximately 5% of such PNP activity. Phosphorylase b was inactive. Monomethylarsonate (MMA(V)) was not reduced by PNP. The experimental results indicate PNP is an important route for the reduction of arsenate to arsenite in mammalian systems.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 48 条
[1]  
[Anonymous], 1999, ARS DRINK WAT
[2]   Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic [J].
Aposhian, HV ;
Gurzau, ES ;
Le, XC ;
Gurzau, A ;
Healy, SM ;
Lu, XF ;
Ma, MS ;
Yip, L ;
Zakharyan, RA ;
Maiorino, RM ;
Dart, RC ;
Tircus, MG ;
Gonzalez-Ramirez, D ;
Morgan, DL ;
Avram, D ;
Aposhian, MM .
CHEMICAL RESEARCH IN TOXICOLOGY, 2000, 13 (08) :693-697
[3]   Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity [J].
Aposhian, HV .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1997, 37 :397-419
[4]  
Aposhian HV, 1997, J PHARMACOL EXP THER, V282, P192
[5]   ARSENIC INGESTION AND INTERNAL CANCERS - A REVIEW [J].
BATES, MN ;
SMITH, AH ;
HOPENHAYNRICH, C .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1992, 135 (05) :462-476
[6]   The pharmacology of the antioxidant lipoic acid [J].
Biewenga, GP ;
Haenen, GRMM ;
Bast, A .
GENERAL PHARMACOLOGY, 1997, 29 (03) :315-331
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   STUDY OF INORGANIC ARSENIC METHYLATION BY RAT-LIVER INVITRO - RELEVANCE FOR THE INTERPRETATION OF OBSERVATIONS IN MAN [J].
BUCHET, JP ;
LAUWERYS, R .
ARCHIVES OF TOXICOLOGY, 1985, 57 (02) :125-129
[9]   α-lipoic acid in liver metabolism and disease [J].
Bustamante, J ;
Lodge, JK ;
Marcocci, L ;
Tritschler, HJ ;
Packer, L ;
Rihn, BH .
FREE RADICAL BIOLOGY AND MEDICINE, 1998, 24 (06) :1023-1039
[10]   Purine nucleoside phosphorylases: properties, functions, and clinical aspects [J].
Bzowska, A ;
Kulikowska, E ;
Shugar, D .
PHARMACOLOGY & THERAPEUTICS, 2000, 88 (03) :349-425