ROBUST SUBSPACE CLUSTERING

被引:226
作者
Soltanolkotabi, Mahdi [1 ]
Elhamifar, Ehsan [2 ]
Candes, Emmanuel J. [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Engn, Dept EECS, Berkeley, CA 94720 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
Subspace clustering; spectral clustering; LASSO; Dantzig selector; l(1) minimization; multiple hypothesis testing; true and false discoveries; geometric functional analysis; nonasymptotic random matrix theory; HIGH-DIMENSIONAL REGRESSION; SWITCHED ARX SYSTEMS; RECOVERY; SEGMENTATION; ALGORITHM; GRAPHS;
D O I
10.1214/13-AOS1199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Subspace clustering refers to the task of finding a multi-subspace representation that best fits a collection of points taken from a high-dimensional space. This paper introduces an algorithm inspired by sparse subspace clustering (SSC) [In IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009) 2790-2797] to cluster noisy data, and develops some novel theory demonstrating its correctness. In particular, the theory uses ideas from geometric functional analysis to show that the algorithm can accurately recover the underlying subspaces under minimal requirements on their orientation, and on the number of samples per subspace. Synthetic as well as real data experiments complement our theoretical study, illustrating our approach and demonstrating its effectiveness.
引用
收藏
页码:669 / 699
页数:31
相关论文
共 59 条
[1]  
Agarwal P. K., 2004, P 23 ACM SIGMOD SIGA, P155
[2]   Nearness to Local Subspace Algorithm for Subspace and Motion Segmentation [J].
Aldroubi, Akram ;
Sekmen, Ali .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (10) :704-707
[3]  
[Anonymous], IEEE T GEOSCIENCE RE
[4]  
[Anonymous], 2004, SIGKDD EXPLOR, DOI DOI 10.1145/1007730.1007731
[5]   Spectral clustering based on local linear approximations [J].
Arias-Castro, Ery ;
Chen, Guangliang ;
Lerman, Gilad .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :1537-1587
[6]   Clustering Based on Pairwise Distances When the Data is of Mixed Dimensions [J].
Arias-Castro, Ery .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) :1692-1706
[7]  
Arora S, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P145
[8]   Identification of switched linear systems via sparse optimization [J].
Bako, Laurent .
AUTOMATICA, 2011, 47 (04) :668-677
[9]  
Balcan MF, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1068
[10]   The LASSO Risk for Gaussian Matrices [J].
Bayati, Mohsen ;
Montanari, Andrea .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (04) :1997-2017