Instability of small stationary localized solutions to a class of reversible 1+1 PDEs

被引:6
作者
Glebsky, LY [1 ]
Lerman, LM [1 ]
机构
[1] RES INST APPL MATH & CYBERNET,NIZHNII NOVGOROD 603005,RUSSIA
关键词
D O I
10.1088/0951-7715/10/2/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study stability properties of small stationary localized and periodic solutions for a class of PDEs reversible with respect to a spatial variable x in the case where the related stationary equation undergoes the reversible Hopf bifurcation. Under general assumptions we prove instability of localized and stability of periodic solutions. Proofs use the normal form of the stationary equation and certain features of differential operators of the form lambda A - M with M being a linear differential operator. Two examples are considered.
引用
收藏
页码:389 / 407
页数:19
相关论文
共 31 条
[1]  
[Anonymous], USP MAT NAUK
[2]  
[Anonymous], LECT NOTES MATH
[3]   STABLE PARTICLE-LIKE SOLUTIONS OF MULTIDIMENSIONAL NONLINEAR FIELDS [J].
ARANSON, IS ;
GORSHKOV, KA ;
LOMOV, AS ;
RABINOVICH, MI .
PHYSICA D, 1990, 43 (2-3) :435-453
[4]  
BELYAKOV LA, 1990, SELECTA MATH SOVIETI, V9, P219
[5]  
BELYAKOV LA, INPRESS INT J COMPUT
[6]  
BRIDGES TJ, 1994, P ROY SOC LOND A MAT, V444, P317
[7]   SUBSIDIARY HOMOCLINIC ORBITS TO A SADDLE-FOCUS FOR REVERSIBLE-SYSTEMS [J].
CHAMPNEYS, AR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (06) :1447-1482
[8]  
Collet P., 1990, INSTABILITIES FRONTS
[9]   INSTABILITIES OF ONE-DIMENSIONAL CELLULAR-PATTERNS [J].
COULLET, P ;
IOOSS, G .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :866-869
[10]  
DALETSKII YL, 1965, STABILITY SOLUTIONS