Stokes phase and geometrical phase in a driven two-level system

被引:62
作者
Kayanuma, Y
机构
[1] Department of Mathematical Sciences, College of Engineering, Osaka Prefecture University, Sakai
来源
PHYSICAL REVIEW A | 1997年 / 55卷 / 04期
关键词
D O I
10.1103/PhysRevA.55.R2495
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The generic two-level model with time-dependent matrix elements becomes soluble in the limit that its diagonal and off-diagonal terms vary along a flat ellipse, encircling the diabolical singular point in the parameter space. The time evolution of the state vector is explicitly obtained, and the condition for its evolution to form a closed circuit in the projective Hilbert space of rays is given as a result of destructive interference at level crossing. The Aharonov-Anandan geometrical phase is shown to be related to the Stokes phase for the Landau-Zener model, which is a natural extension of Berry's phase to nonadiabatic evolutions.
引用
收藏
页码:R2495 / R2498
页数:4
相关论文
共 21 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
Allen L., 1975, OPTICAL RESONANCE 2
[4]   MANIFESTATION OF BERRY TOPOLOGICAL PHASE IN NEUTRON SPIN ROTATION [J].
BITTER, T ;
DUBBERS, D .
PHYSICAL REVIEW LETTERS, 1987, 59 (03) :251-254
[5]   PARAMETERS OF ADIABATIC RAPID PASSAGE IN THE O-O HYPERFINE TRANSITION OF RB-87 [J].
CAMPARO, JC ;
FRUEHOLZ, RP .
PHYSICAL REVIEW A, 1984, 30 (02) :803-811
[6]  
DYKHNE AM, 1962, ZH EKSP TEOR FIZ, V14, P941
[7]   COHERENT DESTRUCTION OF TUNNELING [J].
GROSSMANN, F ;
DITTRICH, T ;
JUNG, P ;
HANGGI, P .
PHYSICAL REVIEW LETTERS, 1991, 67 (04) :516-519
[8]   PHASE COHERENCE AND NONADIABATIC TRANSITION AT A LEVEL-CROSSING IN A PERIODICALLY DRIVEN 2-LEVEL SYSTEM [J].
KAYANUMA, Y .
PHYSICAL REVIEW B, 1993, 47 (15) :9940-9943
[9]   ROLE OF PHASE COHERENCE IN THE TRANSITION DYNAMICS OF A PERIODICALLY DRIVEN 2-LEVEL SYSTEM [J].
KAYANUMA, Y .
PHYSICAL REVIEW A, 1994, 50 (01) :843-845
[10]  
KURATSUJI H, 1987, PROG THEOR PHYS, V58, P1593