Random walks on bundled structures

被引:48
作者
Cassi, D
Regina, S
机构
[1] Dipartimento di Fisica, Istituto Nazionale di Fisica della Materia, Istituto Nazionale di Fisica Nucleare Gruppo Collegato di Parma, Parma, 43100, Viale delle Scienze
关键词
D O I
10.1103/PhysRevLett.76.2914
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bundled structures (BS) are discrete structures obtained joining to each point of a ''base'' graph a copy of a ''fiber'' graph. In condensed matter physics BS are used as realistic models for the geometry and dynamics of nontranslationally invariant systems (polymers, inhomogeneous systems, etc.). We present an analytical solution for the random walk problem on these structures, which is possible when we know the solution for base and fiber separately. We obtain an expression for the spectral dimension of the BS as a function of the spectral dimensions of its components. Moreover, we discuss some applications of these results concerning anomalous diffusion laws, proving the existence of nondisordered structures with logarithmic and sublogarithmic diffusion laws due only to geometric features.
引用
收藏
页码:2914 / 2917
页数:4
相关论文
共 12 条
[1]  
ALEXANDER S, 1982, J PHYS LETT, V43, pL635
[2]   FRACTALS WITHOUT ANOMALOUS DIFFUSION [J].
BURIONI, R ;
CASSI, D .
PHYSICAL REVIEW E, 1994, 49 (03) :R1785-R1787
[3]   SPECTRAL DIMENSION OF BRANCHED STRUCTURES - UNIVERSALITY IN GEOMETRICAL DISORDER [J].
CASSI, D ;
REGINA, S .
PHYSICAL REVIEW LETTERS, 1993, 70 (11) :1647-1649
[4]  
Cassi D., 1992, Modern Physics Letters B, V6, P1397, DOI 10.1142/S0217984992001101
[5]   RANDOM-WALKS ON KEBAB LATTICES - LOGARITHMIC DIFFUSION ON ORDERED STRUCTURES [J].
CASSI, D ;
REGINA, S .
MODERN PHYSICS LETTERS B, 1995, 9 (10) :601-606
[6]  
CASSI D, IN PRESS
[7]  
De Gennes P.-G., 1979, SCALING CONCEPTS POL
[8]  
FONTANA MP, COMMUNICATION
[9]  
HATTORI K, 1987, PROG THEOR PHYS SUPP, V92, P108
[10]   DIFFUSION WITH A TOPOLOGICAL BIAS ON RANDOM STRUCTURES WITH A POWER-LAW DISTRIBUTION OF DANGLING ENDS [J].
HAVLIN, S ;
BUNDE, A ;
GLASER, Y ;
STANLEY, HE .
PHYSICAL REVIEW A, 1986, 34 (04) :3492-3495