Effect of Metal Ions on Photoluminescence, Charge Transport, Magnetic and Catalytic Properties of All-Inorganic Colloidal Nanocrystals and Nanocrystal Solids

被引:152
作者
Nag, Angshuman [1 ,2 ]
Chung, Dae Sung [1 ,2 ]
Dolzhnikov, Dmitriy S. [1 ,2 ]
Dimitrijevic, Nada M. [3 ]
Chattopadhyay, Soma [4 ]
Shibata, Tomohiro [4 ]
Talapin, Dmitri V. [1 ,2 ,3 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Frank Inst, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
SEEDED GROWTH; CDSE; EXCHANGE; INVERSION; PROSPECTS; CDTE; SE;
D O I
10.1021/ja301285x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution processed solar cells, light emitting devices, photocatalytic systems, etc The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e g, Sn2S64-, S2-) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all inorganic NCs and developed strategies for engineering and optimizing NC-based materials
引用
收藏
页码:13604 / 13615
页数:12
相关论文
共 68 条
[1]   Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures [J].
Amirav, Lilac ;
Alivisatos, A. Paul .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (07) :1051-1054
[2]  
[Anonymous], 1982, LANDOLT BORNSTEIN NU, V17a
[3]  
Beaulac R, 2010, NANOCRYSTAL QUANTUM DOTS, SECOND EDITION, P397, DOI 10.1201/9781420079272-c11
[4]   Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications [J].
Bryan, J. Daniel ;
Gamelin, Daniel R. .
PROGRESS IN INORGANIC CHEMISTRY, VOL 54, 2005, 54 :47-126
[5]  
Bube R.H., 1960, Photoconductivity of Solids
[6]   Interaction of Monovalent Ions with Hydrophobic and Hydrophilic Colloids: Charge Inversion and Ionic Specificity [J].
Calero, Carles ;
Faraudo, Jordi ;
Bastos-Gonzalez, Delfi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :15025-15035
[7]   Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J].
Cao, YW ;
Banin, U .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (40) :9692-9702
[8]   Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach [J].
Carbone, Luigi ;
Nobile, Concetta ;
De Giorgi, Milena ;
Sala, Fabio Delia ;
Morello, Giovanni ;
Pompa, Pierpaolo ;
Hytch, Martin ;
Snoeck, Etienne ;
Fiore, Angela ;
Franchini, Isabella R. ;
Nadasan, Monica ;
Silvestre, Albert F. ;
Chiodo, Letizia ;
Kudera, Stefan ;
Cingolani, Roberto ;
Krahne, Roman ;
Manna, Liberato .
NANO LETTERS, 2007, 7 (10) :2942-2950
[9]   Role of Confinement on Diffusion Barriers in Semiconductor Nanocrystals [J].
Chan, Tzu-Liang ;
Zayak, Alexey T. ;
Dalpian, Gustavo M. ;
Chelikowsky, James R. .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[10]   Challenges and Prospects of Electronic Doping of Colloidal Quantum Dots: Case Study of CdSe [J].
Chikan, Viktor .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (21) :2783-2789