Beyond Archimedean solids: Star polyhedral gold nanocrystals

被引:75
作者
Burt, JL
Elechiguerra, JL
Reyes-Gasga, J
Montejano-Carrizales, JM
Jose-Yacaman, M [1 ]
机构
[1] Univ Texas, Ctr Nano & Mol Sci & Technol, Texas Mat Inst, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
[3] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi, Mexico
基金
美国国家科学基金会;
关键词
nanocrystal morphology; nanostructures; star nanocrystals;
D O I
10.1016/j.jcrysgro.2005.09.060
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We report star polyhedral gold nanocrystals synthesized by colloidal reduction with ascorbic acid in water at ambient conditions. We identify two distinct classes of star nanocrystals: multiple-twinned crystals with fivefold symmetry, and monocrystals. These respective classes correspond to icosahedra and cuboctahedra, two Archimedian solids, with preferential growth of their {111} surfaces. Due to this preferential growth, the {111} faces of the original Archimedean solids grow to become tetrahedral pyramids, the base of each pyramid being the original polyhedral face. By assuming a star morphology, gold nanocrystals increase their proportion of exposed {111} surfaces, which possess the lowest surface energy among low-index crystallographic planes for FCC crystals. Thus, we propose that the driving force for star nanocrystal formation Could be the reduction in surface energy that the crystals experience. Interestingly, icosahedrally derived star nanocrystals possess a geometric morphology closely resembling the great stellated dodecahedron, a Kepler-Poinsot solid. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:681 / 691
页数:11
相关论文
共 26 条
  • [1] Bönnemann H, 2001, EUR J INORG CHEM, P2455
  • [2] Monopod, bipod, tripod, and tetrapod gold nanocrystals
    Chen, SH
    Wang, ZL
    Ballato, J
    Foulger, SH
    Carroll, DL
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (52) : 16186 - 16187
  • [3] Cromwell P., 1997, Polyhedra
  • [4] Silver nanowires with five-fold symmetric cross-section
    Gao, Y
    Song, L
    Jiang, P
    Liu, LF
    Yan, XQ
    Zhou, ZP
    Liu, DF
    Wang, JX
    Yuan, HJ
    Zhang, ZX
    Zhao, XW
    Dou, XY
    Zhou, WY
    Wang, G
    Xie, SS
    Chen, HY
    Li, JQ
    [J]. JOURNAL OF CRYSTAL GROWTH, 2005, 276 (3-4) : 606 - 612
  • [5] HAADF study of Au-Pt core-shell bimetallic nanoparticles
    Garcia-Gutierrez, D
    Gutierrez-Wing, C
    Miki-Yoshida, M
    Jose-Yacaman, M
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (03): : 481 - 487
  • [6] STRUCTURE OF SMALL, VAPOR-DEPOSITED PARTICLES .1. EXPERIMENTAL-STUDY OF SINGLE-CRYSTALS AND PARTICLES WITH PENTAGONAL PROFILES
    HEINEMANN, K
    YACAMAN, MJ
    YANG, CY
    POPPA, H
    [J]. JOURNAL OF CRYSTAL GROWTH, 1979, 47 (02) : 177 - 186
  • [7] Wet chemical synthesis of high aspect ratio cylindrical gold nanorods
    Jana, NR
    Gearheart, L
    Murphy, CJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (19): : 4065 - 4067
  • [8] Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters
    Jun, YW
    Lee, JH
    Choi, JS
    Cheon, J
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (31) : 14795 - 14806
  • [9] Kim F., 2004, ANGEW CHEM, V116, P3759, DOI DOI 10.1002/ANGE.200454216
  • [10] Nanometals formation and color
    Liz-Marzan, Luis M.
    [J]. MATERIALS TODAY, 2004, 7 (02) : 26 - 31