Protein kinase C and the development of diabetic vascular complications

被引:247
作者
Way, KJ [1 ]
Katai, N [1 ]
King, GL [1 ]
机构
[1] Harvard Univ, Sch Med, Joslin Diabet Ctr, Div Res, Boston, MA 02215 USA
关键词
protein kinase C (PKC); diabetes mellitus; PKC isoforms; PKC beta; LY333531; vitamin E;
D O I
10.1046/j.0742-3071.2001.00638.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Hyperglycemic control in diabetes is key to preventing the development and progression of vascular complications such as retinopathy, nephropathy and neuropathy. Increased activation of the diacylglycerol (DAG)-protein kinase C (PKC) signal transduction pathway has been identified in vascular tissues from diabetic animals, and in vascular cells exposed to elevated glucose. Vascular abnormalities associated with glucose-induced PKC activation leading to increased synthesis of DAG include altered vascular blood flow, extracellular matrix deposition, basement membrane thickening, increased permeability and neovascularization. Preferential activation of the PKC beta isoform by elevated glucose is reported to occur in a variety of vascular tissues. This has lead to the development of LY333531, a PKC beta isoform specific inhibitor, which has shown potential in animal models to be an orally effective and nontoxic therapy able to produce significant improvements in diabetic retinopathy, nephropathy, neuropathy and cardiac dysfunction. Additionally, the antioxidant vitamin E has been identified as an inhibitor of the DAG-PKC pathway, and shows promise in reducing vascular complications in animal models of diabetes. Given the overwhelming evidence indicating a role for PKC activation in contributing to the development of diabetic vascular complications, pharmacological therapies that can modulate this pathway, particularly with PKC isoform. selectivity, show great promise for treatment of vascular complications, even in the presence of hyperglycemia.
引用
收藏
页码:945 / 959
页数:15
相关论文
共 168 条
[1]   Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor [J].
Aiello, LP ;
Bursell, SE ;
Clermont, A ;
Duh, E ;
Ishii, H ;
Takagi, C ;
Mori, F ;
Ciulla, TA ;
Ways, K ;
Jirousek, M ;
Smith, LEH ;
King, GL .
DIABETES, 1997, 46 (09) :1473-1480
[2]  
Aiello LP, 1999, INVEST OPHTH VIS SCI, V40, pS192
[3]   VASCULAR ENDOTHELIAL GROWTH-FACTOR IN OCULAR FLUID OF PATIENTS WITH DIABETIC-RETINOPATHY AND OTHER RETINAL DISORDERS [J].
AIELLO, LP ;
AVERY, RL ;
ARRIGG, PG ;
KEYT, BA ;
JAMPEL, HD ;
SHAH, ST ;
PASQUALE, LR ;
THIEME, H ;
IWAMOTO, MA ;
PARK, JE ;
NGUYEN, HV ;
AIELLO, LM ;
FERRARA, N ;
KING, GL .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (22) :1480-1487
[4]  
Aiello LP, 1999, DIABETES, V48, pA19
[5]  
AYO SH, 1990, AM J PATHOL, V136, P1339
[6]   HIGH GLUCOSE INCREASES DIACYLGLYCEROL MASS AND ACTIVATES PROTEIN-KINASE-C IN MESANGIAL CELL-CULTURES [J].
AYO, SH ;
RADNIK, R ;
GARONI, JA ;
TROYER, DA ;
KREISBERG, JI .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 261 (04) :F571-F577
[7]   Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells [J].
Babazono, T ;
Kapor-Drezgic, J ;
Dlugosz, JA ;
Whiteside, C .
DIABETES, 1998, 47 (04) :668-676
[8]   ROLE OF EDRF (NITRIC-OXIDE) IN DIABETIC RENAL HYPERFILTRATION [J].
BANK, N ;
AYNEDJIAN, HS .
KIDNEY INTERNATIONAL, 1993, 43 (06) :1306-1312
[9]   Role of oxidative stress in diabetic complications - A new perspective on an old paradigm [J].
Baynes, JW ;
Thorpe, SR .
DIABETES, 1999, 48 (01) :1-9
[10]   DIABETIC CARDIOMYOPATHY - A UNIQUE ENTITY OR A COMPLICATION OF CORONARY-ARTERY DISEASE [J].
BELL, DSH .
DIABETES CARE, 1995, 18 (05) :708-714