Neural network model reference adaptive control of marine vehicles

被引:22
作者
Leonessa, A [1 ]
VanZwieten, T [1 ]
Morel, Y [1 ]
机构
[1] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, POB 162450, Orlando, FL 32816 USA
来源
CURRENT TRENDS IN NONLINEAR SYSTEMS AND CONTROL: IN HONOR OF PETAR KOKOTOVIC AND TURI NICOSIA | 2006年
关键词
D O I
10.1007/0-8176-4470-9_23
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A neural network model reference adaptive controller for trajectory tracking of nonlinear systems is developed. The proposed control algorithm uses a single layer neural network that bypasses the need for information about the system's dynamic structure and characteristics and provides portability. Numerical simulations are performed using nonlinear dynamic models of marine vehicles. Results are presented for two separate vehicle models, an autonomous surface vehicle and an autonomous underwater vehicle, to demonstrate the controller performance in terms of tuning, robustness, and tracking.
引用
收藏
页码:421 / +
页数:2
相关论文
共 20 条
[1]  
Aguiar AP, 2001, IEEE DECIS CONTR P, P4178, DOI 10.1109/CDC.2001.980841
[2]   Universal controllers for stabilization and tracking of underactuated ships [J].
Do, KD ;
Jiang, ZP ;
Pan, J .
SYSTEMS & CONTROL LETTERS, 2002, 47 (04) :299-317
[3]  
Encarnacao P., 2002, THESIS I SUPERIOR TE
[4]   Global output feedback control of dynamically positioned surface vessels: an adaptive control approach [J].
Fang, Y ;
Zergeroglu, E ;
de Queiroz, MS ;
Dawson, DM .
MECHATRONICS, 2004, 14 (04) :341-356
[5]  
Fantoni I, 2000, INT J ROBUST NONLIN, V10, P645, DOI 10.1002/1099-1239(20000715)10:8<645::AID-RNC503>3.0.CO
[6]  
2-U
[7]  
Fossen T.I., 1999, Ph.D. Thesis
[8]  
Fossen T. L., 1998, Preprints of the 4th IFAC Nonlinear Control Systems Design Symposium 1998. NOLCOS '98, P121
[9]  
Godhavn JM, 1996, IEEE DECIS CONTR P, P975, DOI 10.1109/CDC.1996.574608
[10]  
Hayakawa T, 2003, P AMER CONTR CONF, P561