Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase

被引:89
作者
Hashimoto, H
Inoue, T
Nishioka, M
Fujiwara, S
Takagi, M
Imanaka, T
Kai, Y [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, Dept Chem Mat, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Engn, Dept Biotechnol, Suita, Osaka 5650871, Japan
[3] Kyoto Univ, Grad Sch Engn, Dept Synthet Chem & Biol Chem, Sakyo Ku, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
O-6-methylguanine-DNA methyltransferase; crystal structure; hyperthermostability; ion-pairs; DNA repair protein;
D O I
10.1006/jmbi.1999.3100
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of O-6-methylguanine-DNA methyltransferase (EC 2.1.1.63) of hyperthermophilic archaeon Pyrococcus kodakaraensis strain KOD1 (Pk-MGMT) was determined by single isomorphous replacement method with anomalous scattering (SIRAS) at 1.8 Angstrom resolution. The archaeal protein is extremely thermostable and repairs alkylated DNA by suicidal alkyl transfer from guanine O-6 to its own cysteine residue. Archaea constitute the third primary kingdom of living organisms, sharing characteristics with procaryotic and eucaryotic cells. They live in various extreme environments and are thought to include the most ancient organisms on the earth. Structural studies on hyperthermophilic archaeal proteins reveal the structural features essential for stability under the extreme environments in which these organisms live, and will provide the structural basis required for stabilizing various mesophilic proteins for industrial applications. Here, we report the crystal structure of Pk-MGMT and structural comparison of Pk-MGMT and methyltransferase homologue from Escherichia coli (AdaC, C-terminal fragment of Ada protein). Analyses of solvent-accessible surface area (SASA) reveals a large discrepancy between Pk-MGMT and AdaC with respect to the property of the ASA. In the Pk-MGMT structure, the intra-helix ion-pairs contribute to reinforce stability of alpha-helices. The inter-helix ion-pairs exist in the interior of Pk-MGMT and stabilize internal packing of tertiary structure. Furthermore, structural features of helix cappings, intra and inter-helix ion-pairs are found around the active-site structure in Pk-MGMT. (C) 1999 Academic Press.
引用
收藏
页码:707 / 716
页数:10
相关论文
共 44 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   ION-PAIRS IN PROTEINS [J].
BARLOW, DJ ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 168 (04) :867-885
[3]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[4]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[5]   SLOW-COOLING PROTOCOLS FOR CRYSTALLOGRAPHIC REFINEMENT BY SIMULATED ANNEALING [J].
BRUNGER, AT ;
KRUKOWSKI, A ;
ERICKSON, JW .
ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 :585-593
[6]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[7]   KINETIC AND DNA-BINDING PROPERTIES OF RECOMBINANT HUMAN O6-METHYLGUANINE-DNA METHYLTRANSFERASE [J].
CHAN, CL ;
WU, ZN ;
CIARDELLI, T ;
EASTMAN, A ;
BRESNICK, E .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 300 (01) :193-200
[8]   STRUCTURE OF A HYPERTHERMOPHILIC TUNGSTOPTERIN ENZYME, ALDEHYDE FERREDOXIN OXIDOREDUCTASE [J].
CHAN, MK ;
MUKUND, S ;
KLETZIN, A ;
ADAMS, MWW ;
REES, DC .
SCIENCE, 1995, 267 (5203) :1463-1469
[9]   GENETIC STUDIES OF LAC REPRESSOR .4. MUTAGENIC SPECIFICITY IN LACI GENE OF ESCHERICHIA-COLI [J].
COULONDRE, C ;
MILLER, JH .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 117 (03) :577-606
[10]  
Cowtan K., 1994, JOINT CCP4 ESF EACBM, V31, P34