Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis

被引:22
作者
Hua, L
Hefty, PS
Lee, YJ
Lee, YM
Stephens, RS
Price, CW [1 ]
机构
[1] Univ Calif Davis, Dept Food Sci & Technol, Davis, CA 95616 USA
[2] Univ Calif Davis, Mol Struct Facil, Davis, CA 95616 USA
[3] Univ Calif Berkeley, Program Infect Dis, Sch Publ Hlth, Berkeley, CA 94720 USA
关键词
D O I
10.1111/j.1365-2958.2005.04962.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that can cause sexually transmitted and ocular diseases in humans. Its biphasic developmental cycle and ability to evade host-cell defences suggest that the organism responds to external signals, but its genome encodes few recognized signalling pathways. One such pathway is predicted to function by a partner switching mechanism, in which key protein interactions are controlled by serine phosphorylation. From genome analysis this mechanism is both ancient and widespread among eubacteria, but it has been experimentally characterized in only a few. C. trachomatis has no system of genetic exchange, so here an in vitro approach was used to establish the activities and interactions of the inferred partner switching components: the RsbW switch protein/kinase and its RsbV antagonists. The C. trachomatis genome encodes two RsbV paralogs, RsbV(1) and RsbV(2). We found that each RsbV protein was specifically phosphorylated by RsbW, and tandem mass spectrometry located the phosphoryl group on a conserved serine residue. Mutant RsbV(1) and RsbV(2) proteins in which this conserved serine was changed to alanine could activate the yeast two-hybrid system when paired with RsbW, whereas mutant proteins bearing a charged aspartate failed to activate. From this we infer that the phosphorylation state of RsbV(1) and RsbV(2) controls their interaction with RsbW in vivo. This experimental demonstration that the core of the partner switching mechanism is conserved in C. trachomatis indicates that its basic features are maintained over a large evolutionary span. Although the molecular target of the C. tra-chomatis switch remains to be identified, based on the predicted properties of its input phosphatases we propose that the pathway controls an important aspect of the developmental cycle within the host, in response to signals external to the C. trachomatis cytoplasmic membrane.
引用
收藏
页码:623 / 636
页数:14
相关论文
共 69 条
[1]   Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases [J].
Adler, E ;
DonellaDeana, A ;
Arigoni, F ;
Pinna, LA ;
Stragier, P .
MOLECULAR MICROBIOLOGY, 1997, 23 (01) :57-62
[2]   New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σB of Bacillus subtilis [J].
Akbar, S ;
Gaidenko, TA ;
Kang, CM ;
O'Reilly, M ;
Devine, KM ;
Price, CW .
JOURNAL OF BACTERIOLOGY, 2001, 183 (04) :1329-1338
[3]   Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis [J].
Alper, S ;
Dufour, A ;
Garsin, DA ;
Duncan, L ;
Losick, R .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 260 (02) :165-177
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]  
Aravind L, 1999, FEMS MICROBIOL LETT, V176, P111, DOI 10.1111/j.1574-6968.1999.tb13650.x
[6]   The STAS domain - a link between anion transporters and antisigma-factor antagonists [J].
Aravind, L ;
Koonin, EV .
CURRENT BIOLOGY, 2000, 10 (02) :R53-R55
[7]   Novel Mycobacterium tuberculosis anti-σ factor antagonists control σF activity by distinct mechanisms [J].
Beaucher, J ;
Rodrigue, S ;
Jacques, PÉ ;
Smith, I ;
Brzezinski, R ;
Gaudreau, L .
MOLECULAR MICROBIOLOGY, 2002, 45 (06) :1527-1540
[8]   Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis [J].
Belland, RJ ;
Zhong, GM ;
Crane, DD ;
Hogan, D ;
Sturdevant, D ;
Sharma, J ;
Beatty, WL ;
Caldwell, HD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (14) :8478-8483
[9]   Identification and characterization of an unusual double serine/threonine protein phosphatase 2C in the malaria parasite Plasmodium falciparum [J].
Ben Mamoun, C ;
Sullivan, DJ ;
Banerjee, R ;
Goldberg, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (18) :11241-11247
[10]   BACILLUS-SUBTILIS SIGMA-B IS REGULATED BY A BINDING-PROTEIN (RSBW) THAT BLOCKS ITS ASSOCIATION WITH CORE RNA-POLYMERASE [J].
BENSON, AK ;
HALDENWANG, WG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (06) :2330-2334