Regulation of actin assembly associated with protrusion and adhesion in cell migration

被引:629
作者
Le Clainche, Christophe [1 ]
Carlier, Marie-France [1 ]
机构
[1] CNRS, Lab Enzymol & Biochim Struct, F-91198 Gif Sur Yvette, France
关键词
D O I
10.1152/physrev.00021.2007
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
To migrate, a cell first extends protrusions such as lamellipodia and filopodia, forms adhesions, and finally retracts its tail. The actin cytoskeleton plays a major role in this process. The first part of this review (sect. II) describes the formation of the lamellipodial and filopodial actin networks. In lamellipodia, the WASP-Arp2/3 pathways generate a branched filament array. This polarized dendritic actin array is maintained in rapid treadmilling by the concerted action of ADF, profilin, and capping proteins. In filopodia, formins catalyze the processive assembly of nonbranched actin filaments. Cell matrix adhesions mechanically couple actin filaments to the substrate to convert the treadmilling into protrusion and the actomyosin contraction into traction of the cell body and retraction of the tail. The second part of this review (sect. III) focuses on the function and the regulation of major proteins (vinculin, talin, tensin, and alpha-actinin) that control the nucleation, the binding, and the barbed- end growth of actin filaments in adhesions.
引用
收藏
页码:489 / 513
页数:25
相关论文
共 268 条
[1]   Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain [J].
Alberts, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2824-2830
[2]  
ALBIGESRIZO C, 1995, J CELL SCI, V108, P3317
[3]   Pathways and intermediates in forced unfolding of spectrin repeats [J].
Altmann, SM ;
Grünberg, RG ;
Lenne, PF ;
Ylänne, J ;
Raae, A ;
Herbert, K ;
Saraste, M ;
Nilges, M ;
Hörber, JKH .
STRUCTURE, 2002, 10 (08) :1085-1096
[4]   The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments [J].
Amann, KJ ;
Pollard, TD .
NATURE CELL BIOLOGY, 2001, 3 (03) :306-310
[5]   Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase [J].
Amano, M ;
Chihara, K ;
Kimura, K ;
Fukata, Y ;
Nakamura, N ;
Matsuura, Y ;
Kaibuchi, K .
SCIENCE, 1997, 275 (5304) :1308-1311
[6]   Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin [J].
Andrianantoandro, Ernesto ;
Pollard, Thomas D. .
MOLECULAR CELL, 2006, 24 (01) :13-23
[7]   WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation [J].
Antón, IM ;
de la Fuente, MA ;
Sims, TN ;
Freeman, S ;
Ramesh, N ;
Hartwig, JH ;
Dustin, ML ;
Geha, RS .
IMMUNITY, 2002, 16 (02) :193-204
[8]   Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase [J].
Arber, S ;
Barbayannis, FA ;
Hanser, H ;
Schneider, C ;
Stanyon, CA ;
Bernard, O ;
Caroni, P .
NATURE, 1998, 393 (6687) :805-809
[9]   Structural basis for vinculin activation at sites of cell adhesion [J].
Bakolitsa, C ;
Cohen, DM ;
Bankston, LA ;
Bobkov, AA ;
Cadwell, GW ;
Jennings, L ;
Critchley, DR ;
Craig, SW ;
Liddington, RC .
NATURE, 2004, 430 (6999) :583-586
[10]   Talin contains three similar vinculin-binding sites predicted to form an amphipathic helix [J].
Bass, MD ;
Smith, BJ ;
Prigent, SA ;
Critchley, DR .
BIOCHEMICAL JOURNAL, 1999, 341 :257-263