A study of rotationally invariant and symmetric indices of diffusion anisotropy

被引:162
作者
Papadakis, NG [1 ]
Xing, D [1 ]
Houston, GC [1 ]
Smith, JM [1 ]
Smith, MI [1 ]
James, MF [1 ]
Parsons, AA [1 ]
Huang, CLH [1 ]
Hall, LD [1 ]
Carpenter, TA [1 ]
机构
[1] Univ Cambridge, Dept Physiol, Cambridge CB2 1TN, England
基金
英国生物技术与生命科学研究理事会;
关键词
diffusion tensor; anisotropy; noise; optimisation;
D O I
10.1016/S0730-725X(99)00029-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This study investigated the properties of a class of rotationally invariant and symmetric (relative to the principal diffusivities) indices of the anisotropy of water self-diffusion, namely fractional anisotropy (FA), relative anisotropy (RA), and volume ratio (VR), with particular emphasis to their measurement in brain tissues. A simplified theoretical analysis predicted significant differences in the sensitivities of the anisotropy indices (AI) over the distribution of the principal diffusivities. Computer simulations were used to investigate the effects on AI image quality of three magnetic resonance (MR) diffusion tensor imaging (DTI) acquisition schemes, one being novel: the schemes were simulated on cerebral model fibres varying in shape and spatial orientation. The theoretical predictions and the results of the simulations were corroborated by experimentally determined spatial maps of the AI in a normal feline brain in vivo. We found that FA mapped diffusion anisotropy with the greatest detail and SNR whereas VR provided the strongest contrast between low- and high-anisotropy areas at the expense of increased noise contamination and decreased resolution in anisotropic regions. RA proved intermediate in quality. By sampling the space of the effective diffusion ellipsoid more densely and uniformly and requiring the same total imaging time as the published schemes, the novel DTI scheme achieved greater rotational invariance than the published schemes, with improved noise characteristics, resulting in improved image quality of the AI examined. Our findings suggest that significant improvements in diffusion anisotropy mapping are possible and provide criteria for the selection of the most appropriate AI for a particular application. (C) 1999 Elsevier Science Inc.
引用
收藏
页码:881 / 892
页数:12
相关论文
共 36 条
  • [1] ANALYSIS AND CORRECTION OF MOTION ARTIFACTS IN-DIFFUSION WEIGHTED IMAGING
    ANDERSON, AW
    GORE, JC
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (03) : 379 - 387
  • [2] ARFKEN G, 1985, MATH METHODS PHYSICI
  • [3] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [4] Inferring microstructural features and the physiological state of tissues from diffusion-weighted images
    Basser, PJ
    [J]. NMR IN BIOMEDICINE, 1995, 8 (7-8) : 333 - 344
  • [5] Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
  • [6] ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03): : 247 - 254
  • [7] Bevington P., 2002, Data Reduction and Error Analysis for the Physical Sciences, V3rd ed.
  • [8] MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia
    Buchsbaum, MS
    Tang, CY
    Peled, S
    Gudbjartsson, H
    Lu, DF
    Hazlett, EA
    Downhill, J
    Haznedar, M
    Fallon, JH
    Atlas, SW
    [J]. NEUROREPORT, 1998, 9 (03) : 425 - 430
  • [9] ULTRA-FAST IMAGING
    COHEN, MS
    WEISSKOFF, RM
    [J]. MAGNETIC RESONANCE IMAGING, 1991, 9 (01) : 1 - 37
  • [10] MR COLOR MAPPING OF MYELIN FIBER ORIENTATION
    DOUEK, P
    TURNER, R
    PEKAR, J
    PATRONAS, N
    LEBIHAN, D
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1991, 15 (06) : 923 - 929