Scattering matrices and Weyl functions

被引:52
作者
Behrndt, Jussi [1 ]
Malamud, Mark M. [2 ]
Neidhardt, Hagen [3 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Donetsk Natl Univ, Dept Math, UA-83055 Donetsk, Ukraine
[3] WIAS Berlin, D-10117 Berlin, Germany
关键词
D O I
10.1112/plms/pdn016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a scattering system {A(Theta), A(0)} consisting of self-adjoint extensions A(Theta) and A(0) of a symmetric operator A with finite deficiency indices, the scattering matrix {S-Theta(lambda)} and a spectral shift function xi(Theta) are calculated in terms of the Weyl function associated with a boundary triplet for A*, and a simple proof of the Krein-Birman formula is given. The results are applied to singular Sturm-Liouville operators with scalar and matrix potentials, to Dirac operators and to Schrodinger operators with point interactions.
引用
收藏
页码:568 / 598
页数:31
相关论文
共 39 条
[1]  
ADAMYAN VM, 1988, J SOVIET MATH, V42, P1537, DOI DOI 10.1007/BF01665040
[2]  
Agranovich Z. S., 1963, INVERSE PROBLEM SCAT
[3]   Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions [J].
Albeverio, S ;
Brasche, JF ;
Malamud, MM ;
Neidhardt, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (01) :144-188
[4]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, Vsecond
[5]  
[Anonymous], 1999, LONDON MATH SOC LECT
[6]  
[Anonymous], GOTTINGER NACHRICHTE
[7]  
[Anonymous], FIELDS I COMMUN
[8]  
[Anonymous], 1910, GOTT NACHR
[9]  
[Anonymous], 2003, LINEARE OPERATOREN 2
[10]  
Baumgartel H., 1983, Mathematical scattering theory