Quantum stabilizer codes and classical linear codes

被引:27
作者
Cleve, R [1 ]
机构
[1] UNIV CALIF SANTA BARBARA, INST THEORET PHYS, SANTA BARBARA, CA 93106 USA
关键词
D O I
10.1103/PhysRevA.55.4054
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that within any quantum stabilizer code there lurks a classical binary linear code with similar error-correcting capabilities. Using this result--which applies to degenerate as well as nondegenerate codes--previously established necessary conditions for classical linear codes can be easily translated into necessary conditions for quantum stabilizer codes. Examples of specific consequences are as follows: for a quantum channel subject to a delta fraction of errors, the best asymptotic capacity attainable by ally stabilizer code cannot exceed H(1/2+root 2 delta(1-2 delta)); and, for the depolarizing channel with fidelity parameter delta, the best asymptotic capacity attainable by any stabilizer code cannot exceed 1-H(delta).
引用
收藏
页码:4054 / 4059
页数:6
相关论文
共 20 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[3]  
CALDERBANK AR, UNPUB
[4]  
CLEVE R, UNPUB
[5]   Fault-tolerant error correction with efficient quantum codes [J].
DiVincenzo, DP ;
Shor, PW .
PHYSICAL REVIEW LETTERS, 1996, 77 (15) :3260-3263
[6]   Quantum error correction for communication [J].
Ekert, A ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (12) :2585-2588
[7]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[8]  
KNILL E, UNPUB
[9]   Perfect quantum error correcting code [J].
Laflamme, R ;
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :198-201
[10]  
MacWilliams F.J., 1986, The Theory of Error-Correcting Codes