Modeling unfolded states of proteins and peptides .2. Backbone solvent accessibility

被引:119
作者
Creamer, TP [1 ]
Srinivasan, R [1 ]
Rose, GD [1 ]
机构
[1] JOHNS HOPKINS UNIV,SCH MED,DEPT BIOPHYS & BIOPHYS CHEM,BALTIMORE,MD 21205
关键词
D O I
10.1021/bi962819o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Buried surface area is often used as a measure of the contribution to protein folding from the hydrophobic effect. Quantitatively, the surface buried upon folding is reckoned as the difference in area between the native and unfolded states. This calculation is well defined for a known structure but model-dependent for the unfolded state. In a previous paper [Creamer, T. P., Srinivasan, R., & Rose, G. D. (1995) Biochemistry 34, 16245-16250], we developed two models that bracket the surface area of the unfolded state between Limiting extremes. Using these extrema, it was shown that earlier models, such as an extended tripeptide, overestimate the surface area of side chains in the unfolded state. In this sequel to our previous paper, we focus on backbone surface in the unfolded state, again adopting the strategy of trapping the area between limiting extrema. A principal conclusion of this present study is that most backbone surface in proteins is buried within local structure.
引用
收藏
页码:2832 / 2835
页数:4
相关论文
共 26 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]   THE PROTEIN-FOLDING PROBLEM - THE NATIVE FOLD DETERMINES PACKING, BUT DOES PACKING DETERMINE THE NATIVE FOLD [J].
BEHE, MJ ;
LATTMAN, EE ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (10) :4195-4199
[3]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[4]   HOW RANDOM IS A HIGHLY DENATURED PROTEIN [J].
CALMETTES, P ;
DURAND, D ;
DESMADRIL, M ;
MINARD, P ;
RECEVEUR, V ;
SMITH, JC .
BIOPHYSICAL CHEMISTRY, 1994, 53 (1-2) :105-113
[5]   STRUCTURAL INVARIANTS IN PROTEIN FOLDING [J].
CHOTHIA, C .
NATURE, 1975, 254 (5498) :304-308
[6]   SOLVENT-ACCESSIBLE SURFACES OF PROTEINS AND NUCLEIC-ACIDS [J].
CONNOLLY, ML .
SCIENCE, 1983, 221 (4612) :709-713
[7]  
CREMER TP, 1995, BIOCHEMISTRY-US, V34, P16245
[8]  
DILL KA, 1991, ANNU REV BIOCHEM, V60, P795, DOI 10.1146/annurev.biochem.60.1.795
[9]   SOLVATION ENERGY IN PROTEIN FOLDING AND BINDING [J].
EISENBERG, D ;
MCLACHLAN, AD .
NATURE, 1986, 319 (6050) :199-203
[10]   ANALYSIS AND CLASSIFICATION OF DISULFIDE CONNECTIVITY IN PROTEINS - THE ENTROPIC EFFECT OF CROSS-LINKAGE [J].
HARRISON, PM ;
STERNBERG, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 244 (04) :448-463