High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers

被引:188
作者
Grossiord, Nadia [2 ,7 ]
Loos, Joachim [3 ,4 ,7 ]
van Laake, Lucas [5 ]
Maugey, Maryse [6 ]
Zakri, Cecile [6 ]
Koning, Cor E. [2 ,7 ]
Hart, A. John [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Tech Univ Eindhoven, Polymer Chem Lab, NL-5600 MB Eindhoven, Netherlands
[3] Tech Univ Eindhoven, Lab Polymer Technol, NL-5600 MB Eindhoven, Netherlands
[4] Tech Univ Eindhoven, Lab Mat & Interfaces Chem, NL-5600 MB Eindhoven, Netherlands
[5] Tech Univ Eindhoven, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[6] CNRS, Ctr Rech Paul Pascal, F-33600 Pessac, France
[7] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1002/adfm.200800528
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a detailed study of the influence of carbon nanotube (CNT) characteristics on the electrical conductivity of polystyrene nanocomposites produced using a latex-based approach. We processed both industrially-produced multi-wall CNT (MWCNT) powders and MWCNTs from vertically-aligned films made in-house, and demonstrate that while the raw CNTs are individualized and dispersed comparably within the polymer matrix, the electrical conductivity of the final nanocomposites differs significantly due to the intrinsic characteristics of the CNTs. Owing to their longer length after dispersion, the percolation threshold observed using MWCNTs from vertically-aligned films is five times lower than the value for industrially-produced MWCNT powders. Further, owing to the high structural quality of the CNTs from vertically-aligned films, the resulting composite films exhibit electrical conductivity of 10(3) S m(-1) at 2 wt% CNTs. On the contrary, composites made using the industrially-produced CNTs exhibit conductivity of only tens of S m(-1). To our knowledge, the measured electrical conductivity for CNT/PS composites using CNTs from vertically-aligned films is by far the highest value yet reported for CNT/PS nanocomposites at this loading.
引用
收藏
页码:3226 / 3234
页数:9
相关论文
共 93 条
[1]   Length separation studies of single walled carbon nanotube dispersions [J].
Arnold, K. ;
Hennrich, F. ;
Krupke, R. ;
Lebedkin, S. ;
Kappes, M. M. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13) :3073-3076
[2]   Structure-assigned optical spectra of single-walled carbon nanotubes [J].
Bachilo, SM ;
Strano, MS ;
Kittrell, C ;
Hauge, RH ;
Smalley, RE ;
Weisman, RB .
SCIENCE, 2002, 298 (5602) :2361-2366
[3]   In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering [J].
Badaire, S ;
Poulin, P ;
Maugey, M ;
Zakri, C .
LANGMUIR, 2004, 20 (24) :10367-10370
[4]   EXCLUDED VOLUME AND ITS RELATION TO THE ONSET OF PERCOLATION [J].
BALBERG, I ;
ANDERSON, CH ;
ALEXANDER, S ;
WAGNER, N .
PHYSICAL REVIEW B, 1984, 30 (07) :3933-3943
[5]   CRITICAL-BEHAVIOR OF THE TWO-DIMENSIONAL STICKS SYSTEM [J].
BALBERG, I ;
BINENBAUM, N ;
ANDERSON, CH .
PHYSICAL REVIEW LETTERS, 1983, 51 (18) :1605-1608
[6]   Percolation and tunneling in composite materials [J].
Balberg, I ;
Azulay, D ;
Toker, D ;
Millo, O .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (15) :2091-2121
[7]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[8]   Electronic properties of single-walled carbon nanotube networks [J].
Bekyarova, E ;
Itkis, ME ;
Cabrera, N ;
Zhao, B ;
Yu, AP ;
Gao, JB ;
Haddon, RC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (16) :5990-5995
[9]   Transport properties of PMMA-carbon nanotubes composites [J].
Benoit, JM ;
Corraze, B ;
Lefrant, S ;
Blau, WJ ;
Bernier, P ;
Chauvet, O .
SYNTHETIC METALS, 2001, 121 (1-3) :1215-1216
[10]   PLASTIC COMPOSITES FOR ELECTROMAGNETIC-INTERFERENCE SHIELDING APPLICATIONS [J].
BIGG, DM ;
STUTZ, DE .
POLYMER COMPOSITES, 1983, 4 (01) :40-46