Numerical study of neoclassical plasma pedestal in a tokamak geometry

被引:148
作者
Chang, CS
Ku, S
Weitzner, H
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
关键词
D O I
10.1063/1.1707024
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fundamental properties of steep neoclassical plasma pedestals in a quiescent tokamak plasma have been investigated with a new guiding center particle code XGC: an X-point included Guiding Center code. It is shown that the width of the steepest neoclassical pedestals is similar to an experimentally observed edge pedestal width, and that a steep pedestal must be accompanied by a self-consistent negative radial electric field well. It is also shown that a steep neoclassical pedestal can form naturally at a quiescent diverted edge as the particle source from the neutral penetration (and heat flux from the core plasma) is balanced by the sharply increasing convective ion loss toward the separatrix. The steep neoclassical pedestal and the strong radial electric field well are suppressed by an anomalous diffusion coefficient of a strength appropriate to an L-mode state; nonetheless, the ExB shearing rate increases rapidly with pedestal temperature. Additionally, the present study shows that a steep pedestal at the diverted edge acts as a cocurrent parallel momentum source. (C) 2004 American Institute of Physics.
引用
收藏
页码:2649 / 2667
页数:19
相关论文
共 25 条
[1]   TIME-DEPENDENT DRIFT HAMILTONIAN [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1984, 27 (10) :2441-2445
[2]   MONTE-CARLO EVALUATION OF TRANSPORT-COEFFICIENTS [J].
BOOZER, AH ;
KUOPETRAVIC, G .
PHYSICS OF FLUIDS, 1981, 24 (05) :851-859
[3]   Generation of plasma rotation by ion cyclotron resonance heating in tokamaks [J].
Chang, CS ;
Phillips, CK ;
White, R ;
Zweben, S ;
Bonoli, PT ;
Rice, JE ;
Greenwald, MJ ;
deGrassie, J .
PHYSICS OF PLASMAS, 1999, 6 (05) :1969-1977
[4]   X-transport: A baseline nonambipolar transport in a diverted tokamak plasma edge [J].
Chang, CS ;
Kue, S ;
Weitzner, H .
PHYSICS OF PLASMAS, 2002, 9 (09) :3884-3892
[5]   LOSS ION ORBITS AT THE TOKAMAK EDGE [J].
CHANKIN, AV ;
MCCRACKEN, GM .
NUCLEAR FUSION, 1993, 33 (10) :1459-1469
[6]   A review of theories of the L-H transition [J].
Connor, JW ;
Wilson, HR .
PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 (01) :R1-R74
[7]   H mode confinement in Alcator C-Mod [J].
Greenwald, M ;
Boivin, RL ;
Bombarda, F ;
Bonoli, PT ;
Fiore, CL ;
Garnier, D ;
Goetz, JA ;
Golovato, SN ;
Graf, MA ;
Granetz, RS ;
Horne, S ;
Hubbard, A ;
Hutchinson, IH ;
Irby, JH ;
LaBombard, B ;
Lipschultz, B ;
Marmar, ES ;
May, MJ ;
McCracken, GM ;
OShea, P ;
Rice, JE ;
Schachter, J ;
Snipes, JA ;
Stek, PC ;
Takase, Y ;
Terry, JL ;
Wang, Y ;
Watterson, R ;
Welch, B ;
Wolfe, SM .
NUCLEAR FUSION, 1997, 37 (06) :793-807
[8]   ROLE OF EDGE ELECTRIC-FIELD AND POLOIDAL ROTATION IN THE L-H TRANSITION [J].
GROEBNER, RJ ;
BURRELL, KH ;
SERAYDARIAN, RP .
PHYSICAL REVIEW LETTERS, 1990, 64 (25) :3015-3018
[9]   Neoclassical radial current balance in tokamaks and transition to the H mode [J].
Heikkinen, JA ;
Kiviniemi, TP ;
Peeters, AG .
PHYSICAL REVIEW LETTERS, 2000, 84 (03) :487-490
[10]   THEORY OF PLASMA TRANSPORT IN TOROIDAL CONFINEMENT SYSTEMS [J].
HINTON, FL ;
HAZELTINE, RD .
REVIEWS OF MODERN PHYSICS, 1976, 48 (02) :239-308