The Saccharomyces cerevisiae HCR1 gene encoding a homologue of the p35 subunit of human translation initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3

被引:39
作者
Valásek, L
Hasek, J
Trachsel, H
Imre, EM
Ruis, H
机构
[1] Univ Vienna, Inst Biochem & Mol Cell Biol, Vienna Bioctr, A-1030 Vienna, Austria
[2] Ludwig Boltzmann Forschungsstelle Biochem, A-1030 Vienna, Austria
[3] Acad Sci Czech Republ, Inst Microbiol, CR-14220 Prague, Czech Republic
[4] Univ Bern, Inst Biochem & Mol Biol, CH-3012 Bern, Switzerland
关键词
D O I
10.1074/jbc.274.39.27567
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The complex eukaryotic initiation factor 3 (eIF3) was shown to promote the formation of the 43 S preinitiation complex by dissociating 40 S and 60 S ribosomal subunits, stabilizing the ternary complex, and aiding mRNA binding to 40 S ribosomal subunits. Recently, we described the identification of RPG1 (TIF32), the p110 subunit of the eIF3 core complex in yeast. In a screen for Saccharomyces cerevisiae multicopy suppressors of the rpg1-1 temperature-sensitive mutant, an unknown gene corresponding to the open reading frame YLR192C was identified. When overexpressed, the 30-kDa gene product, named Hcr1p, was able to support, under restrictive conditions, growth of the rpg1-1 temperature-sensitive mutant, but not of a Rpg1p-depleted mutant. An hcr1 null mutant was viable, but showed slight reduction of growth when compared with the wild-type strain. Physical interaction between the Hcr1 and Rpg1 proteins was shown by co-immunoprecipitation analysis. The combination of Delta hcr1 and rpg1-1 mutations resulted in a synthetic enhancement of the slow growth phenotype at a semipermissive temperature. In a computer search, a significant homology to the human p35 subunit of the eIF3 complex was found. We assume that the yeast Hcr1 protein participates in translation initiation likely as a protein associated with the eIF3 complex.
引用
收藏
页码:27567 / 27572
页数:6
相关论文
共 44 条
[1]   Translation initiation factor-dependent extracts from yeast Saccharomyces cerevisiae [J].
Altmann, M ;
Trachsel, H .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1997, 11 (04) :343-352
[2]   The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA [J].
Anderson, J ;
Phan, L ;
Cuesta, R ;
Carlson, BA ;
Pak, M ;
Asano, K ;
Björk, GR ;
Tamame, M ;
Hinnebusch, AG .
GENES & DEVELOPMENT, 1998, 12 (23) :3650-3662
[3]   Complex formation by all five homologues of mammalian translation initiation factor 3 subunits from yeast Saccharomyces cerevisiae [J].
Asano, K ;
Phan, L ;
Anderson, J ;
Hinnebusch, AG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18573-18585
[4]   Conserved bipartite motifs in yeast eIF5 and eIF2Bε, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2 [J].
Asano, K ;
Krishnamoorthy, T ;
Phan, L ;
Pavitt, GD ;
Hinnebusch, AG .
EMBO JOURNAL, 1999, 18 (06) :1673-1688
[5]   The PROSITE database, its status in 1995 [J].
Bairoch, A ;
Bucher, P ;
Hofmann, K .
NUCLEIC ACIDS RESEARCH, 1996, 24 (01) :189-196
[6]   Cloning and characterization of the p42 subunit of mammalian translation initiation factor 3 (eIF3): demonstration that eIF3 interacts with eIF5 in mammalian cells [J].
Bandyopadhyay, A ;
Maitra, U .
NUCLEIC ACIDS RESEARCH, 1999, 27 (05) :1331-1337
[7]  
BENNE R, 1978, J BIOL CHEM, V253, P3078
[8]   Characterization of cDNAs encoding the p44 and p35 subunits of human translation initiation factor eIF3 [J].
Block, KL ;
Vornlocher, HP ;
Hershey, JWB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :31901-31908
[9]   A NEW YEAST TRANSLATION INITIATION-FACTOR SUPPRESSES A MUTATION IN THE ELF-4A RNA HELICASE [J].
COPPOLECCHIA, R ;
BUSER, P ;
STOTZ, A ;
LINDER, P .
EMBO JOURNAL, 1993, 12 (10) :4005-4011
[10]   ISOLATION OF A PROTEIN COMPLEX CONTAINING TRANSLATION INITIATION-FACTOR PRT1 FROM SACCHAROMYCES-CEREVISIAE [J].
DANAIE, P ;
WITTMER, B ;
ALTMANN, M ;
TRACHSEL, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (09) :4288-4292