Electronic and optical properties of a nanographite ribbon in an electric field

被引:90
作者
Chang, CP
Huang, YC
Lu, CL
Ho, JH
Li, TS
Lin, MF
机构
[1] Tainan Womans Coll Arts & Technol, Ctr Gen Educ, Tainan 710, Taiwan
[2] Natl Cheng Kung Univ, Dept Phys, Tainan 710, Taiwan
[3] Kun Shan Univ Technol, Dept Elect Engn, Tainan 710, Taiwan
[4] Kao Yuan Univ Technol, Ctr Gen Educ, Kaohsiung 821, Taiwan
关键词
graphite; modeling; electronic properties; absorption;
D O I
10.1016/j.carbon.2005.08.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Through the tight-binding model, the effect of electric field on electronic and optical properties of a zigzag (an armchair) H-terminated nanographite ribbon is studied. The effective electric field shifts the Fermi level (E-F), modifies the energy dispersions, alters the subband spacing, produces the new edge state, changes the band gap, and causes the semiconductor-metal transitions. First, in the metallic zigzag ribbon, the degeneracy of flat bands at EF is lifted by the electric field. Meanwhile, an energy band gap E-g, depending on the ribbon width and the field strength, is induced. And while the field strength increases, the semiconductor-metal transition occurs in both the semiconducting armchair and the zigzag ribbons. Then, the effect of electric field on band structures is completely reflected in the features of density of states-the shift of peak position, the change of peak height and the alternation of band gap. Most importantly, the effective electric field has great influence on the low-energy absorption spectra. It can change frequency of the first peak, alter the peak height, and even produce the new peaks. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:508 / 515
页数:8
相关论文
共 35 条
[1]   Field emission mechanisms of graphitic nanostructures [J].
Araidai, M ;
Nakamura, Y ;
Watanabe, K .
PHYSICAL REVIEW B, 2004, 70 (24) :1-5
[2]   Anisotropy of the Raman spectra of nanographite ribbons -: art. no. 047403 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Medeiros-Ribeiro, G ;
Enoki, T ;
Kobayashi, Y ;
Takai, K ;
Fukui, K ;
Dresselhaus, MS ;
Saito, R ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :047403-1
[3]   Magnetoelectronic properties of nanographite ribbons [J].
Chang, CP ;
Lu, CL ;
Shyu, FL ;
Chen, RB ;
Huang, YC ;
Lin, MF .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 27 (1-2) :82-97
[4]   Magnetoband structures of AB-stacked zigzag nanographite ribbons [J].
Chang, CP ;
Chiu, CW ;
Shyu, FL ;
Chen, RB ;
Lin, MF .
PHYSICS LETTERS A, 2002, 306 (2-3) :137-143
[5]   Optical spectra of AB- and AA-stacked nanographite ribbons [J].
Chiu, CW ;
Shyu, FL ;
Chang, CP ;
Chen, RB ;
Lin, MF .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (01) :170-177
[6]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[7]   Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes -: art. no. 165402 [J].
Grüneis, A ;
Saito, R ;
Samsonidze, GG ;
Kimura, T ;
Pimenta, MA ;
Jorio, A ;
Souza, AG ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2003, 67 (16)
[8]   Giant axial electrostrictive deformation in carbon nanotubes [J].
Guo, WL ;
Guo, YF .
PHYSICAL REVIEW LETTERS, 2003, 91 (11) :115501-115501
[9]   New type of antiferromagnetic state in stacked nanographite [J].
Harigaya, K .
CHEMICAL PHYSICS LETTERS, 2001, 340 (1-2) :123-128
[10]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58