A Bayesian framework to identify principal intravoxel diffusion profiles based on diffusion-weighted MR imaging

被引:19
作者
Melie-Garcia, Lester [1 ]
Canales-Rodriguez, Erick J. [1 ]
Aleman-Gomez, Yasser [1 ]
Lin, Ching-Po [2 ]
Iturria-Medina, Yasser [1 ]
Valdes-Hernandez, Pedro A. [1 ]
机构
[1] Cuban Neurosci Ctr, Neuroimaging Dept, Havana, Cuba
[2] Natl Yang Ming Univ, Lab Brain Connectiv, Inst Neurosci, Taipei 112, Taiwan
关键词
diffusion-weighted imaging (DWI); diffusion tensor imaging; Bayesian model selection; anisotropy characterization; reversible jump; RJMCMC;
D O I
10.1016/j.neuroimage.2008.04.242
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
paper we introduce a new method to characterize the intravoxel anisotropy based on diffusion-weighted imaging The, proposed solution, under a fully Bayesian formalism, deals with the problem of joint Bayesian Model selection and parameter estimation to reconstruct the principal diffusion profiles or primary fiber orientations in a voxel. We develop an efficient stochastic algorithm based on the reversible jump Markov chain Monte Carlo (RJMCMC) method in order to perform the Bayesian computation. RJMCMC is a good choice for this problem because of its ability to jump between models of different dimensionality. This methodology provides posterior estimates of the parameters of interest (fiber orientation, diffusivities etc) unconditional of the model assumed. It also gives an empirical posterior distribution of the number of primary nerve fiber orientations given the DWI data. Different probability maps can be assessed using this methodology: 1) the intravoxel fiber orientation map (or orientational distribution function) that gives the probability of finding, a fiber in a particular spatial orientation; 2) a three-dimensional mal) of the probability of finding a particular number of fibers in each voxel; 3) a three-dimensional MaxPro (maximum probability) map that provides tire most probable number of fibers for each voxel. In order to study the performance and reliability of the presented approach, we tested it on synthetic data; an ex-vivo phantom of intersecting capillaries; and DWI data from a human subject. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:750 / 770
页数:21
相关论文
共 30 条
[1]   Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data [J].
Alexander, DC ;
Barker, GJ ;
Arridge, SR .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) :331-340
[2]   Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC [J].
Andrieu, C ;
Doucet, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (10) :2667-2676
[3]   Gastric outlet obstruction caused by a giant gastroduodenal artery aneurysm: a case report [J].
Androulakakis, Z ;
Paspatis, G ;
Hatzidakis, A ;
Kokkinaki, M ;
Papanicolaou, N ;
Grammatikakis, I ;
Liapi, D ;
Kandylakis, S .
EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY, 2001, 13 (01) :59-61
[4]   New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter [J].
Assaf, Y ;
Freidlin, RZ ;
Rohde, GK ;
Basser, PJ .
MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) :965-978
[5]   Simulated annealing using a Reversible Jump Markov Chain Monte Carlo algorithm for fuzzy clustering [J].
Bandyopadhyay, S .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (04) :479-490
[6]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[7]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[8]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[9]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[10]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088