Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila

被引:678
作者
Wagh, DA
Rasse, TM
Asan, E
Hofbauer, A
Schwenkert, I
Dürrbeck, H
Buchner, S
Dabauvalle, MC
Schmidt, M
Olin, G
Wichmann, C
Kittel, R
Sigrist, SJ
Buchner, E [1 ]
机构
[1] Theodor Boveri Inst Biowissen, Lehrstuhl Genet & Neurobiol, D-97074 Wurzburg, Germany
[2] European Neurosci Inst Gottingen, D-37077 Gottingen, Germany
[3] Inst Anat & Zellbiol, D-97070 Wurzburg, Germany
[4] Inst Zool, Lehrstuhl Entwicklungsbiol, D-93047 Regensburg, Germany
[5] Theodor Boveri Inst Biowissenschaft, Lehrstuhl Zell & Entwicklungsbiol, D-97074 Wurzburg, Germany
关键词
D O I
10.1016/j.neuron.2006.02.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurotransmitters are released at presynaptic active zones (AZs). In the fly Drosophila, monoclonal antibody (MAB) nc82 specifically labels AZs. We employ nc82 to identify Bruchpilot protein (BRP) as a previously unknown AZ component. BRP shows homology to human AZ protein ELKS/CAST/ERC, which binds RIM1 in a complex with Bassoon and Munc13-1. The C terminus of BRP displays structural similarities to multifunctional cytoskeletal proteins. During development, transcription of the bruchpilot locus (brp) coincides with neuronal differentiation. Panneural reduction of BRP expression by RNAi constructs permits a first functional characterization of this large AZ protein: larvae show reduced evoked but normal spontaneous transmission at neuromuscular junctions. In adults, we observe loss of T bars at active zones, absence of synaptic components in electroretinogram, locomotor inactivity, and unstable flight (hence "bruchpilot"-crash pilot). We propose that BRP is critical for intact AZ structure and normal-evoked neurotransmitter release at chemical synapses of Drosophila.
引用
收藏
页码:833 / 844
页数:12
相关论文
共 48 条
[1]   Coordinating structural and functional synapse development: Postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology [J].
Albin, SD ;
Davis, GW .
JOURNAL OF NEUROSCIENCE, 2004, 24 (31) :6871-6879
[2]   DIFFERENTIAL ULTRASTRUCTURE OF SYNAPTIC TERMINALS ON VENTRAL LONGITUDINAL ABDOMINAL MUSCLES IN DROSOPHILA LARVAE [J].
ATWOOD, HL ;
GOVIND, CK ;
WU, CF .
JOURNAL OF NEUROBIOLOGY, 1993, 24 (08) :1008-1024
[3]   Assessing ultrastructure of crustacean and insect neuromuscular junctions [J].
Atwood, HL ;
Cooper, RL .
JOURNAL OF NEUROSCIENCE METHODS, 1996, 69 (01) :51-58
[4]   GENETIC DISSECTION OF BEHAVIOR [J].
BENZER, S .
SCIENTIFIC AMERICAN, 1973, 229 (06) :24-37
[5]  
BOSCHEK CB, 1971, Z ZELLFORSCH MIK ANA, V118, P369
[6]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[7]  
BROADIE KS, 1993, J NEUROSCI, V13, P144
[8]  
BUCHNER E, 1986, CELL TISSUE RES, V246, P57
[9]  
BUCHNER E, 1988, CELL TISSUE RES, V253, P357, DOI 10.1007/BF00222292
[10]   GENETIC AND MOLECULAR-IDENTIFICATION OF A DROSOPHILA HISTIDINE-DECARBOXYLASE GENE REQUIRED IN PHOTORECEPTOR TRANSMITTER SYNTHESIS [J].
BURG, MG ;
SARTHY, PV ;
KOLIANTZ, G ;
PAK, WL .
EMBO JOURNAL, 1993, 12 (03) :911-919