Classification of amyloid status using machine learning with histograms of oriented 3D gradients

被引:17
作者
Cattell, Liam [1 ]
Platsch, Guenther [2 ]
Pfeiffer, Richie [3 ]
Declerck, Jerome [2 ]
Schnabel, Julia A. [4 ]
Hutton, Chloe [2 ]
机构
[1] Univ Oxford, Dept Engn Sci, Inst Biomed Engn, Oxford OX1 2JD, England
[2] Siemens Mol Imaging, Oxford, England
[3] Piramal Imaging, Berlin, Germany
[4] Kings Coll London, Div Imaging Sci & Biomed Engn, London WC2R 2LS, England
基金
美国国家卫生研究院; 加拿大健康研究院; 英国工程与自然科学研究理事会;
关键词
Amyloid; Positron emission tomography; Florbetapir; Florbetaben; Pittsburgh compound B; Classification; FLORBETAPIR F 18; ALZHEIMERS-DISEASE; PET; QUANTIFICATION; REGISTRATION; ROBUST; OPTIMIZATION; DEMENTIA; BETA;
D O I
10.1016/j.nicl.2016.05.004
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Brain amyloid burden may be quantitatively assessed from positron emission tomography imaging using standardised uptake value ratios. Using these ratios as an adjunct to visual image assessment has been shown to improve inter-reader reliability, however, the amyloid positivity threshold is dependent on the tracer and specific image regions used to calculate the uptake ratio. To address this problem, we propose a machine learning approach to amyloid status classification, which is independent of tracer and does not require a specific set of regions of interest. Our method extracts feature vectors from amyloid images, which are based on histograms of oriented three-dimensional gradients. We optimised our method on 133 F-18-florbetapir brain volumes, and applied it to a separate test set of 131 volumes. Using the same parameter settings, we then applied our method to 209 C-11-PiB images and 128 F-18-florbetaben images. We compared our method to classification results achieved using two other methods: standardised uptake value ratios and a machine learning method based on voxel intensities. Our method resulted in the largest mean distances between the subjects and the classification boundary, suggesting that it is less likely to make low-confidence classification decisions. Moreover, our method obtained the highest classification accuracy for all three tracers, and consistently achieved above 96% accuracy. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:990 / 1003
页数:14
相关论文
共 40 条
[1]  
Amyvid, 2012, AM FLORB F 18 INJ HI
[2]  
[Anonymous], J NUCL MED
[3]   Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study [J].
Barthel, Henryk ;
Gertz, Hermann-Josef ;
Dresel, Stefan ;
Peters, Oliver ;
Bartenstein, Peter ;
Buerger, Katharina ;
Hiemeyer, Florian ;
Wittemer-Rump, Sabine M. ;
Seibyl, John ;
Reininger, Cornelia ;
Sabri, Osama .
LANCET NEUROLOGY, 2011, 10 (05) :424-435
[4]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[5]   Matching with shape contexts [J].
Belongie, S ;
Malik, J .
IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES, PROCEEDINGS, 2000, :20-26
[6]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[7]  
Cattell L, 2015, L N COMPUT VIS BIOME, V22, P197, DOI 10.1007/978-3-319-18431-9_17
[8]   Classification of amyloid-positivity in controls: Comparison of visual read and quantitative approaches [J].
Cohen, Ann D. ;
Mowrey, Wenzhu ;
Weissfeld, Lisa A. ;
Aizenstein, Howard J. ;
McDade, Eric ;
Mountz, James M. ;
Nebes, Robert D. ;
Saxton, Judith A. ;
Snitz, Beth ;
DeKosky, Steven ;
Williamson, Jeff ;
Lopez, Oscar L. ;
Price, Julie C. ;
Mathis, Chester A. ;
Klunk, William E. .
NEUROIMAGE, 2013, 71 :207-215
[9]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[10]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893