The calcium binding site in cytochrome aa3 from Paracoccus denitrificans

被引:43
作者
Riistama, S [1 ]
Laakkonen, L [1 ]
Wikstrom, M [1 ]
Verkhovsky, MI [1 ]
Puustinen, A [1 ]
机构
[1] Univ Helsinki, Inst Biomed Sci & Biocentrum Helsinki, Dept Med Chem, Helsinki Bioenerget Grp, FIN-00014 Helsinki, Finland
关键词
D O I
10.1021/bi990885v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A Shift in the spectrum of heme a induced by calcium or proton binding, or by the proton electrochemical gradient, has been attributed to interaction of Ca2+ or H+ with the vicinity of the heme propionates in mitochondrial cytochrome c oxidase, and proposed to be associated with the exit path of proton translocation. However, this shift is absent in cytochrome c oxidases from yeast and bacteria [Kirichenko et al. (1998) FEES Lett. 423, 329-333]. Here we report that mutations of Glu56 or Gln63 in a newly described Ca2+/Na+ binding site in subunit I of cytochrome c oxidase from Paracoccus denitrificans [Ostermeier et al. (1997) Proc. Natl. Acad Sci. U.S.A. 94, 10547-10553] establish the Ca2+-dependent spectral shift in heme a. This shift is counteracted by low pH and by sodium ions, as was described for mammalian cytochrome c oxidase, but in the mutant Paracoccus enzymes Na+ is also able to shift the heme a spectrum, albeit to a smaller extent. We conclude that the Ca2+-induced shift in both Paracoccus and mitochondrial cytochrome aa(3) is due to binding of the cation to the new metal binding site. Comparison of the structures of this site in the two types of enzyme allows rationalization of their different reactivity with cations. Structural analysis and data from site-directed mutagenesis experiments suggest mechanisms by which the cation binding may influence the heme spectrum.
引用
收藏
页码:10670 / 10677
页数:8
相关论文
共 33 条
[1]   Protein data bank archives of three-dimensional macromolecular structures [J].
Abola, EE ;
Sussman, JL ;
Prilusky, J ;
Manning, NO .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :556-571
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   REDOX-LINKED HYDROGEN-BOND STRENGTH CHANGES IN CYTOCHROME-A - IMPLICATIONS FOR A CYTOCHROME-OXIDASE PROTON PUMP [J].
BABCOCK, GT ;
CALLAHAN, PM .
BIOCHEMISTRY, 1983, 22 (10) :2314-2319
[4]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[5]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :49-54
[6]   GenBank [J].
Benson, DA ;
Boguski, MS ;
Lipman, DJ ;
Ostell, J ;
Ouellette, BFF .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :1-7
[7]  
BERRY EA, 1985, J BIOL CHEM, V260, P2458
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   STUDIES ON UTILIZATION OF NITRATE BY MICROCOCCUS DENITRIFICANS [J].
CHANG, JP ;
MORRIS, JG .
JOURNAL OF GENERAL MICROBIOLOGY, 1962, 29 (02) :301-+
[10]   DICTIONARY OF PROTEIN SECONDARY STRUCTURE - PATTERN-RECOGNITION OF HYDROGEN-BONDED AND GEOMETRICAL FEATURES [J].
KABSCH, W ;
SANDER, C .
BIOPOLYMERS, 1983, 22 (12) :2577-2637