An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus

被引:63
作者
Umeyama, T [1 ]
Lee, PC [1 ]
Ueda, K [1 ]
Horinouchi, S [1 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biotechnol, Bunkyo Ku, Tokyo 1138657, Japan
来源
MICROBIOLOGY-UK | 1999年 / 145卷
关键词
Streptomyces griseus; serine/threonine kinase; signal transduction; protein phosphorylation; aerial mycelium formation;
D O I
10.1099/00221287-145-9-2281
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In Streptomyces coelicolor A3(2), a protein serine/threonine kinase (AfsK) and its target protein (AfsR) control secondary metabolism, AfsK and AfsR homologues (AfsK-g and AfsR-g) from Streptomyces griseus showed high end-to-end similarity in amino acid sequence with the respective S. coelicolor A3(2) proteins, as determined by cloning and nucleotide sequencing. AfsK-g and a fusion protein between AfsK-g and thioredoxin (TRX-AfsK-g) produced in high yield as inclusion bodies in Escherichia coli were solubilized with urea, purified by column chromatography and then refolded to an active form by dialysis to gradually remove the urea. AfsR-g was also fused to glutathione S-transferase (GST-AfsR-g); the fusion product in the soluble fraction in E. coli was purified. Incubation of AfsK-g or TRX-AfsK-g in the presence of [gamma(-32)P]ATP yielded autophosphorylated products containing phosphoserine and phosphothreonine residues. In addition, TRX-AfsK-g phosphorylated serine and threonine residues of GST-AfsR-g in the presence of [gamma(-32)P]ATP. Disruption of chromosomal afsK-g had no effect on A-factor or streptomycin production, irrespective of the culture conditions. The afsK-g disruptants did not form aerial mycelium or spores on media containing glucose at concentrations higher than 1%, but did form spores on mannitol- and glycerol-containing media; this suggests that afsK-g is essential for morphogenesis in the presence of glucose. Introduction of afsK-g restored aerial mycelium formation in the disruptants. The phenotype of afsR-g disruptants was similar to that of afsK-g disruptants; introduction of afsR-g restored the defect in aerial mycelium formation on glucose-containing medium. Thus the AfsK/AfsR system in S. griseus is conditionally needed for morphological differentiation, whereas in S. coelicolor A3(2) it is conditionally involved in secondary metabolism.
引用
收藏
页码:2281 / 2292
页数:12
相关论文
共 46 条
[1]   HUMAN CELLULAR SRC GENE - NUCLEOTIDE-SEQUENCE AND DERIVED AMINO-ACID SEQUENCE OF THE REGION CODING FOR THE CARBOXY-TERMINAL 2-THIRDS OF PP60C-SRC [J].
ANDERSON, SK ;
GIBBS, CP ;
TANAKA, A ;
KUNG, HJ ;
FUJITA, DJ .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (05) :1122-1129
[2]   NUCLEOTIDE-SEQUENCE AND EXACT LOCALIZATION OF THE NEOMYCIN PHOSPHOTRANSFERASE GENE FROM TRANSPOSON TN5 [J].
BECK, E ;
LUDWIG, G ;
AUERSWALD, EA ;
REISS, B ;
SCHALLER, H .
GENE, 1982, 19 (03) :327-336
[3]   BETA-ADRENERGIC-RECEPTOR KINASE - PRIMARY STRUCTURE DELINEATES A MULTIGENE FAMILY [J].
BENOVIC, JL ;
DEBLASI, A ;
STONE, WC ;
CARON, MG ;
LEFKOWITZ, RJ .
SCIENCE, 1989, 246 (4927) :235-240
[4]   THE RELATIONSHIP BETWEEN BASE COMPOSITION AND CODON USAGE IN BACTERIAL GENES AND ITS USE FOR THE SIMPLE AND RELIABLE IDENTIFICATION OF PROTEIN-CODING SEQUENCES [J].
BIBB, MJ ;
FINDLAY, PR ;
JOHNSON, MW .
GENE, 1984, 30 (1-3) :157-166
[5]   Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system [J].
Brian, P ;
Riggle, FJ ;
Santos, RA ;
Champness, WC .
JOURNAL OF BACTERIOLOGY, 1996, 178 (11) :3221-3231
[6]  
CHATER KF, 1989, REGULATION OF PROCARYOTIC DEVELOPMENT, P277
[7]  
CHATER KF, 1984, MICROBIAL DEV, P89
[8]  
COOPER JA, 1983, METHOD ENZYMOL, V99, P387
[9]   afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2) [J].
Floriano, B ;
Bibb, M .
MOLECULAR MICROBIOLOGY, 1996, 21 (02) :385-396
[10]   THE PROTEIN-KINASE FAMILY - CONSERVED FEATURES AND DEDUCED PHYLOGENY OF THE CATALYTIC DOMAINS [J].
HANKS, SK ;
QUINN, AM ;
HUNTER, T .
SCIENCE, 1988, 241 (4861) :42-52