Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

被引:187
作者
Wozniak, A. S. [1 ]
Bauer, J. E. [1 ]
Sleighter, R. L. [2 ]
Dickhut, R. M. [1 ]
Hatcher, P. G. [2 ]
机构
[1] Virginia Inst Marine Sci, Coll William & Mary, Sch Marine Sci, Gloucester Point, VA 23062 USA
[2] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA
关键词
D O I
10.5194/acp-8-5099-2008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC) to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was utilized in this study to provide detailed molecular level characterization of the hi(,h molecular weight (HMW; m/z>223) component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223-600 for each sample. Approximately 86% (Virginia) and 78% (New York) of these peaks were assigned molecular formulas using only carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1-4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC) on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition. several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA) laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.
引用
收藏
页码:5099 / 5111
页数:13
相关论文
共 93 条
[1]   A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber [J].
Alfarra, M. R. ;
Paulsen, D. ;
Gysel, M. ;
Garforth, A. A. ;
Dommen, J. ;
Prevot, A. S. H. ;
Worsnop, D. R. ;
Baltensperger, U. ;
Coe, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :5279-5293
[2]   Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry [J].
Altieri, K. E. ;
Seitzinger, S. P. ;
Carlton, A. G. ;
Turpin, B. J. ;
Klein, G. C. ;
Marshall, A. G. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (07) :1476-1490
[3]   Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean [J].
Baker, AR ;
Jickells, TD ;
Witt, M ;
Linge, KL .
MARINE CHEMISTRY, 2006, 98 (01) :43-58
[4]  
Benner R, 2002, BIOGEOCHEMISTRY MARI, P59, DOI [DOI 10.1016/B978-012323841-2/50005-1, 10.1016/B978-012323841-2/50005-1]
[5]   A technology-based global inventory of black and organic carbon emissions from combustion [J].
Bond, TC ;
Streets, DG ;
Yarber, KF ;
Nelson, SM ;
Woo, JH ;
Klimont, Z .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D14) :D14203
[6]   Effect of experimental parameters on the ESI FT-ICR mass spectrum of fulvic acid [J].
Brown, TL ;
Rice, JA .
ANALYTICAL CHEMISTRY, 2000, 72 (02) :384-390
[7]   ATMOSPHERIC VISIBILITY RELATED TO AEROSOL MASS CONCENTRATION - A REVIEW [J].
CHARLSON, RJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1969, 3 (10) :913-&
[8]  
Chen LWA, 2002, ATMOS ENVIRON, V36, P4541
[9]   Airborne particulate matter and human health: A review [J].
Davidson, CI ;
Phalen, RF ;
Solomon, PA .
AEROSOL SCIENCE AND TECHNOLOGY, 2005, 39 (08) :737-749
[10]   Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach [J].
Decesari, S ;
Facchini, MC ;
Fuzzi, S ;
Tagliavini, E .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D1) :1481-1489