Regulation of human glutamate dehydrogenases: Implications for glutamate, ammonia and energy metabolism in brain

被引:99
作者
Plaitakis, A [1 ]
Zaganas, I [1 ]
机构
[1] Univ Crete, Sch Hlth Sci, Sect Med, Dept Neurol, Iraklion, Crete, Greece
关键词
glutamate dehydrogenase; recombinant; L-leucine; ADP; GTP;
D O I
10.1002/jnr.10054
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of glutamate to alpha -ketoglutarate using NAD or NADP as cofactors. In mammalian brain, GDH is located predominantly in astrocytes, where it is probably involved in the metabolism of transmitter glutamate. The exact mechanisms that regulate glutamate fluxes through this pathway, however, have not been fully understood. In the human, GDH exists in heat-resistant and heat-labile isoforms, encoded by the GLUD1 (housekeeping) and GLUD2 (nerve tissue-specific) genes, respectively. These forms differ in their catalytic and allosteric properties. Kinetic studies showed that the Km value for glutamate for the nerve tissue GDH is within the range of glutamate levels in astrocytes (2.43 mM), whereas for the housekeeping enzyme, this value is significantly higher (7.64 mM; P < 0.01). The allosteric activators ADP (0.1-1.0 mM) and L-leucine (1.0-10.0 mM) induce a concentration-dependent enzyme stimulation that is proportionally greater for the nerve tissue-specific GDH (up to 1,600%) than for the housekeeping enzyme (up to 150%). When used together at lower concentrations, ADP (10-50 mM) and L-leucine (75-200 muM) act synergistically in stimulating GDH activity. GTP exerts a powerful inhibitory effect (IC50 = 0.20 mM) on the housekeeping GDH; in contrast, the nerve tissue isoenzyme is resistant to GTP inhibition. Thus, although the housekeeping GDH is regulated primarily by GTP, the nerve tissue GDH activity depends largely on available ADP or L-leucine levels. Conditions associated with enhanced hydrolysis of ATP to ADP (e.g., intense glutamatergic transmission) are likely to activate nerve tissue-specific GDH leading to an increased glutamate flux through this pathway. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:899 / 908
页数:10
相关论文
共 67 条
[1]  
ABE T, 1992, INVEST OPHTH VIS SCI, V33, P447
[2]   MOLECULAR-CLONING AND NUCLEOTIDE-SEQUENCE OF THE CDNA FOR HUMAN-LIVER GLUTAMATE-DEHYDROGENASE PRECURSOR [J].
AMURO, N ;
YAMAURA, M ;
GOTO, Y ;
OKAZAKI, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1988, 152 (03) :1395-1400
[3]  
[Anonymous], ENZYMES
[4]   GLIAL GLUTAMATE-DEHYDROGENASE - ULTRASTRUCTURAL-LOCALIZATION AND REGIONAL DISTRIBUTION IN RELATION TO THE MITOCHONDRIAL ENZYME, CYTOCHROME-OXIDASE [J].
AOKI, C ;
MILNER, TA ;
BERGER, SB ;
SHEU, KFR ;
BLASS, JP ;
PICKEL, VM .
JOURNAL OF NEUROSCIENCE RESEARCH, 1987, 18 (02) :305-318
[5]   PURIFICATION AND PROPERTIES OF RAT-BRAIN GLUTAMATE-DEHYDROGENASE [J].
CHEE, PY ;
DAHL, JL ;
FAHIEN, LA .
JOURNAL OF NEUROCHEMISTRY, 1979, 33 (01) :53-&
[6]   2 SOLUBLE FORMS OF GLUTAMATE-DEHYDROGENASE ISOPROTEINS FROM BOVINE BRAIN [J].
CHO, SW ;
LEE, JW ;
CHOI, SY .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 233 (01) :340-346
[7]   THE TIME COURSE OF GLUTAMATE IN THE SYNAPTIC CLEFT [J].
CLEMENTS, JD ;
LESTER, RAJ ;
TONG, G ;
JAHR, CE ;
WESTBROOK, GL .
SCIENCE, 1992, 258 (5087) :1498-1501
[8]  
COLON AD, 1986, J NEUROCHEM, V46, P1811
[9]   BIOCHEMISTRY AND PHYSIOLOGY OF BRAIN AMMONIA [J].
COOPER, AJL ;
PLUM, F .
PHYSIOLOGICAL REVIEWS, 1987, 67 (02) :440-519
[10]   3 HUMAN GLUTAMATE-DEHYDROGENASE GENES (GLUD1, GLUDP2, AND GLUDP3) ARE LOCATED ON CHROMOSOME-10Q, BUT ARE NOT CLOSELY PHYSICALLY LINKED [J].
DELOUKAS, P ;
DAUWERSE, JG ;
MOSCHONAS, NK ;
VANOMMEN, GJB ;
VANLOON, APGM .
GENOMICS, 1993, 17 (03) :676-681