Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose

被引:70
作者
Gonzalez, R [1 ]
Tao, H [1 ]
Shanmugam, KT [1 ]
York, SW [1 ]
Ingram, LO [1 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
关键词
D O I
10.1021/bp010121i
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The simplicity of the fermentation process (anaerobic with pH, temperature, and agitation control) in ethanologenic Escherichia coli KO11 and LY01 makes this an attractive system to investigate the utility of gene arrays for biotechnology applications. By using this system, gene expression, glycolytic flux, and growth rate have been compared in glucose-grown and xylose-grown cells. Although the initial metabolic steps differ, ethanol yields from both sugars were essentially identical on a weight basis, and little carbon was diverted to biosynthesis. Expression of only 27 genes changed by more than 2-fold in both strains. These included induction of xylose-specific operons (xylE, xylFGHR, and xylAB) regulated by XylR and the cyclic AMP-CRP system and repression of Mlc-regulated genes encoding glucose uptake (ptsHlcrr, ptsG) and mannose uptake (manXYZ) during growth on xylose. However, expression of genes encoding central carbon metabolism and biosynthesis differed by less than 2-fold. Simple statistical methods were used to investigate these more subtle changes. The reproducibility (coefficient of variation of 12%) of expression measurements (mRNA as cDNA) was found to be similar to that typically observed for in vitro measurements of enzyme activities. Using Student's t test, many smaller but significant sugar-dependent changes were identified (p < 0.05 in both strains). A total of 276 genes were more highly expressed during growth on xylose; 307 genes were more highly expressed with glucose. Slower growth (lower ATP yield) on xylose was accompanied by decreased expression of 62 genes concerned with the biosynthesis of small molecules (amino acids, nucleotides, cofactors, and lipids), transcription, and translation; 5 such genes were expressed at a higher level. In xylose-grown cells, 90 genes associated with the transport, catabolism, and regulation of pathways for alternative carbon sources were expressed at higher levels than in glucose-grown cells, consistent with a relaxation of control by the cyclic AMP-CRP regulatory system. Changes in expression of genes encoding the Embden-Meyerhof-Parnas (EMP) pathway were in excellent agreement with calculated changes in flux for individual metabolites. Flux through all but one step, pyruvate kinase, was predicted to be higher during glucose fermentation. Expression levels (glucose/xylose) were higher in glucose-grown cells for all EMP genes except the isoenzymes encoding pyruvate kinase (pykA and pykF). Expression of both isoenzymes was generally higher during xylose fermentation but statistically higher in both strains only for pykF encoding the isoenzyme activated by fructose-6-phosphate, a key metabolite connecting pentose metabolism to the EMP pathway. The coordinated changes in expression of genes encoding the EMP pathway suggest the presence of a common regulatory system and that flux control within the EMP pathway may be broadly distributed. In contrast, expression levels for genes encoding the Pentose-Phosphate pathway did not differ significantly between glucose-grown and xylose-grown cells.
引用
收藏
页码:6 / 20
页数:15
相关论文
共 71 条
[1]  
AIBA A, 1989, J BIOL CHEM, V264, P21239
[2]  
[Anonymous], 1996, ESCHERICHIA COLI SAL, P307
[3]   Global gene expression profiling in Escherichia coli K12 -: The effects of integration host factor [J].
Arfin, SM ;
Long, AD ;
Ito, ET ;
Tolleri, L ;
Riehle, MM ;
Paegle, ES ;
Hatfield, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (38) :29672-29684
[4]  
ARNTZEN CE, 1999, BIOBASED IND PRODUCT
[5]   PARAMETRIC STUDIES OF ETHANOL-PRODUCTION FROM XYLOSE AND OTHER SUGARS BY RECOMBINANT ESCHERICHIA-COLI [J].
BEALL, DS ;
OHTA, K ;
INGRAM, LO .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 38 (03) :296-303
[6]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[7]   FruR mediates catabolite activation of pyruvate kinase (pykF) gene expression in Escherichia coli [J].
Bledig, SA ;
Ramseier, TM ;
Saier, MH .
JOURNAL OF BACTERIOLOGY, 1996, 178 (01) :280-283
[8]   Metal-ion tolerance in Escherichia coli:: analysis of transcriptional profiles by gene-array technology [J].
Brocklehurst, KR ;
Morby, AP .
MICROBIOLOGY-UK, 2000, 146 :2277-2282
[9]  
BUCHHARDT G, 1993, J BACTERIOL, V175, P2327
[10]  
CAMERON DC, 2000, Patent No. 6087140