Two-dimensional global manifolds of vector fields

被引:70
作者
Krauskopf, B [1 ]
Osinga, H
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1063/1.166450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an efficient algorithm for computing two-dimensional stable and unstable manifolds of three-dimensional vector fields. Larger and larger pieces of a manifold are grown until a sufficiently long piece is obtained. This allows one to study manifolds geometrically and obtain important features of dynamical behavior. For illustration, we compute the stable manifold of the origin spiralling into the Lorenz attractor, and an unstable manifold in zeta(3)-model converging to an attracting limit cycle. (C) 1999 American Institute of Physics. [S1054-1500(99)02403-9].
引用
收藏
页码:768 / 774
页数:7
相关论文
共 23 条
[1]  
*AIP EPAPS, ECHAOEH9024903 AIP E
[2]  
[Anonymous], 1997, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user's Manual
[3]   ASYMPTOTIC CHAOS [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICA D, 1985, 14 (03) :327-347
[4]  
BACK A, 1992, NOT AM MATH SOC, V39, P303
[5]   A subdivision algorithm for the computation of unstable manifolds and global attractors [J].
Dellnitz, M ;
Hohmann, A .
NUMERISCHE MATHEMATIK, 1997, 75 (03) :293-317
[6]   Exploring invariant sets and invariant measures [J].
Dellnitz, M ;
Hohmann, A ;
Junge, O ;
Rumpf, M .
CHAOS, 1997, 7 (02) :221-228
[7]  
DOEDEL EJ, COMMUNICATION
[8]  
GUCKENHEIMER J, 1993, NATO ADV SCI INST SE, V408, P241
[9]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[10]   AN EFFICIENT METHOD FOR COMPUTING INVARIANT-MANIFOLDS OF PLANAR MAPS [J].
HOBSON, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 104 (01) :14-22