The hypothalamic hormone, TRH, stimulates PRL secretion and gene transcription. We have examined the possibility that the mitogen-activated protein kinase (MAPK) may play a role in mediating TRH effects on the PRL gene. TRH was found to stimulate sustained activation of MAPK in PRL-producing, GH(3) cells, consistent with a possible role in transcriptional regulation. A kinase-defective, interfering MAPK kinase (MAPKK) mutant reduced TRH induction of the PRL promoter. Treatment with the MAPKK inhibitor, PD98059, blocked TRH-induced activation of MAPK and also reduced TRH induction of a PRL-luciferase reporter gene, confirming that MAPK activation is necessary for TRH effects on PRL gene expression. previous studies have demonstrated that the PRL promoter contains binding sites for members of the Ets family of transcription factors, which are important for mediating MAPK responsiveness of the PRL promotor. Mutation of specific Rs sites within the PRL promoter reduced responsiveness to both TRH and MAPK. The finding that BMA elements required for MAPK responsiveness of the PRL gene colocalize with DMA elements required for TRH responsiveness further supports a role for MAPK in mediating TRH effects on the PRL gene. We also explored the signaling mechanisms that link the TRH receptor to MAPK induction. Occupancy of the TRH receptor results in activation of protein kinase C (PKC) as well as increases in the concentration of Ca2+ due to release from intracellular stores and entry of Ca2+ through Ca2+ channels. A PMC inhibitor, GF109203X, and an L-type Ca2+ channel blocker, nimodipine, both partially reduced TRH-induced MAPK activation and PRL promoter activity. The effects of the two inhibitors were additive. These studies are consistent with a signaling pathway involving PKC- and Ca2+-dependent:activation of MAPK, which leads to phosphorylation of:an Ets transcription factor and activation of the PRL promoter.