Common polynomial Lyapunov functions for linear switched systems

被引:65
作者
Mason, P
Boscain, U
Chitour, Y
机构
[1] SISSA, ISAS, I-34014 Trieste, Italy
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
switched systems; stability; polynomial Lyapunov functions; uncertain systems;
D O I
10.1137/040613147
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider linear switched systems. x( t) = A(u( t))x( t), x is an element of R-n, u is an element of U, {Au : u is an element of U} compact, and the problem of asymptotic stability for arbitrary switching functions, uniform with respect to switching ( UAS). Given a UAS system, it is always possible to build a common polynomial Lyapunov function. Our main result is that the degree of that common polynomial Lyapunov function is not uniformly bounded over all the UAS systems. This result answers a question raised by Dayawansa and Martin. A generalization to a class of piecewise-polynomial Lyapunov functions is given.
引用
收藏
页码:226 / 245
页数:20
相关论文
共 21 条
[1]  
Agrachev A.A., 2004, ENCY MATH SCI, V87
[2]   Lie-algebraic stability criteria or switched systems [J].
Agrachev, AA ;
Liberzon, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (01) :253-269
[3]  
ANGELI D, IN PRESS SYSTEMS CON
[4]  
Angeli D., 2000, P 14 INT S MATH THEO
[5]  
BACCIOTTI A, IN PRESS INT J CONTR
[6]   A new class of universal Lyapunov functions for the control of uncertain linear systems [J].
Blanchini, F ;
Miani, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) :641-647
[7]   NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST-CONTROL [J].
BLANCHINI, F .
AUTOMATICA, 1995, 31 (03) :451-461
[8]   Stability of planar switched systems: The linear single input case [J].
Boscain, U .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (01) :89-112
[9]  
BUBNICKI Z, 2004, COMM CONTROL ENG SER
[10]   Homogeneous Lyapunov functions for systems with structured uncertainties [J].
Chesi, G ;
Garulli, A ;
Tesi, A ;
Vicino, A .
AUTOMATICA, 2003, 39 (06) :1027-1035