Transition to high-dimensional chaos through quasiperiodic motion

被引:25
作者
Pazó, D [1 ]
Sánchez, E
Matías, MA
机构
[1] Univ Santiago de Compostela, Fac Fis, Grp Fis No Lineal, E-15706 Santiago De Compostela, Spain
[2] Univ Salamanca, Escuela Tecn Super Ingn Ind, E-37700 Salamanca, Spain
[3] Univ Illes Balears, CSIC, IMEDEA, Inst Mediterraneo Estudios Avanzados, E-07071 Palma de Mallorca, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2001年 / 11卷 / 10期
关键词
D O I
10.1142/S0218127401003747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this contribution we report on a transition to high-dimensional chaos through three-frequency quasiperiodic behavior. The resulting chaotic attractor has a one positive and two null Lyapunov exponents. The transition occurs at the point at which two symmetry related three-dimensional tori merge in a crisis-like bifurcation. The route can be summarized as: 2D torus --> 3D torus --> high-dimensional chaotic attractor.
引用
收藏
页码:2683 / 2688
页数:6
相关论文
共 30 条
[1]   Characterizing bifurcations and classes of motion in the transition to chaos through 3D-tori of a continuous experimental system in solid mechanics [J].
Alaggio, R ;
Rega, G .
PHYSICA D, 2000, 137 (1-2) :70-93
[2]   BIFURCATIONS AND TRANSITION TO CHAOS THROUGH 3-DIMENSIONAL TORI [J].
ANISHCHENKO, VS ;
SAFONOVA, MA ;
FEUDEL, U ;
KURTHS, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03) :595-607
[3]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[4]   PERSISTENCE OF 3-FREQUENCY QUASIPERIODICITY UNDER LARGE PERTURBATIONS [J].
BATTELINO, PM .
PHYSICAL REVIEW A, 1988, 38 (03) :1495-1502
[5]  
Berge P., 1986, ORDER CHAOS
[6]  
COLLINS JJ, 1994, BIOL CYBERN, V71, P95, DOI 10.1007/BF00197312
[7]  
CURRY J, 1977, SPRINGER NOTES MATH, V668, P48
[8]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[9]   On the destruction of three-dimensional tori [J].
Feudel, U ;
Safonova, MA ;
Kurths, J ;
Anishchenko, VS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (07) :1319-1332
[10]  
FEUDEL U, 1993, J BIFURCATION CHAOS, V3, P131