共 37 条
In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy
被引:132
作者:
Hahnen, E
Eyüpoglu, IY
Brichta, L
Haastert, K
Tränkle, C
Siebzehnrübl, FA
Riessland, M
Hölker, I
Claus, P
Romstöck, J
Buslei, R
Wirth, B
Blümcke, I
机构:
[1] Univ Cologne, Inst Human Genet, Inst Genet, D-50931 Cologne, Germany
[2] Univ Cologne, CMMC, Cologne, Germany
[3] Univ Erlangen Nurnberg, Dept Neuropathol, Erlangen, Germany
[4] Univ Erlangen Nurnberg, Dept Neurosurg, Erlangen, Germany
[5] Hannover Med Sch, Dept Neuroanat, Hannover, Germany
[6] Ctr Syst Neurosci ZSN, Hannover, Germany
[7] Univ Bonn, Inst Pharm, Dept Pharmacol & Toxicol, D-5300 Bonn, Germany
关键词:
histone deacetylase inhibitor;
spinal muscular atrophy;
suberoylanilide hydroxamic acid;
survival motor neuron gene;
D O I:
10.1111/j.1471-4159.2006.03868.x
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation.
引用
收藏
页码:193 / 202
页数:10
相关论文