Backward stochastic differential equations driven by G-Brownian motion

被引:131
作者
Hu, Mingshang [1 ]
Ji, Shaolin [2 ]
Peng, Shige [1 ,2 ]
Song, Yongsheng [3 ]
机构
[1] Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China
[2] Shandong Univ, Qilu Inst Finance, Jinan, Shandong, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
G-expectation; G-Brownian motion; G-martingale; Backward SDEs; CALCULUS; EXPECTATIONS;
D O I
10.1016/j.spa.2013.09.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the backward stochastic differential equations driven by a G-Brownian motion (B-t)(t >= 0) in the following form: Y-t = xi + integral(T)(t) f(s, Y-s, Z(s))d(s) + integral(T)(t) g(s, Y-s, Z(s))d < B >(s) - integral(T)(t) Z(s)dB(s) - (K-T - K-t), where K is a decreasing G.-martingale. Under Lipschitz conditions of f and g in Y and Z, the existence and uniqueness of the solution (Y, Z, K) of the above BSDE in the G-framework is proved. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:759 / 784
页数:26
相关论文
共 27 条
[1]  
[Anonymous], 1995, Applied Mathematical Finance, DOI DOI 10.1080/13504869500000005
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 2008, ARXIV08032656V1MATHP
[4]   CONJUGATE CONVEX FUNCTIONS IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (02) :384-404
[5]   Theoretical framework for the pricing of contingent claims in the presence of model uncertainty [J].
Denis, Laurent ;
Martini, Claude .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (02) :827-852
[6]   Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths [J].
Denis, Laurent ;
Hu, Mingshang ;
Peng, Shige .
POTENTIAL ANALYSIS, 2011, 34 (02) :139-161
[7]  
Ekren I., 2012, ARXIV12100007V1
[8]  
Ekren I., 2013, ANN PROBAB IN PRESS
[9]   On Representation Theorem of G-Expectations and Paths of G-Brownian Motion [J].
Hu, Ming-shang ;
Peng, Shi-ge .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (03) :539-546
[10]  
Krylov N.V., 1987, Nonlinear Parabolic and Elliptic Equations of the Second Order