High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism

被引:220
作者
Li, Linsen [1 ]
Meng, Fei [1 ]
Jin, Song [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
FeF3; nanowire; conversion cathode; high capacity; lithium-ion batteries; ELECTRODE MATERIALS; DRIVEN; SILICON; ANODES; GROWTH; FEF3; NANOCOMPOSITES; LITHIATION; KINETICS; STORAGE;
D O I
10.1021/nl303630p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF3) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF3 nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF3 NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF3 NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF3) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF3 NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.
引用
收藏
页码:6030 / 6037
页数:8
相关论文
共 43 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J].
Badway, F ;
Cosandey, F ;
Pereira, N ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1318-A1327
[3]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[4]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[5]   Energy storage beyond the horizon: Rechargeable lithium batteries [J].
Bruce, Peter G. .
SOLID STATE IONICS, 2008, 179 (21-26) :752-760
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[7]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[8]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[9]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[10]   Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte [J].
Choi, NS ;
Lee, YM ;
Seol, W ;
Lee, JA ;
Park, JK .
SOLID STATE IONICS, 2004, 172 (1-4) :19-24