A parallel algorithm for mesh smoothing

被引:42
作者
Freitag, L
Jones, M
Plassmann, P
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[3] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
关键词
parallel computing; mesh smoothing; unstructured meshes; parallel algorithms; finite elements;
D O I
10.1137/S1064827597323208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Maintaining good mesh quality during the generation and refinement of unstructured meshes in finite-element applications is an important aspect in obtaining accurate discretizations and well-conditioned linear systems. In this article, we present a mesh-smoothing algorithm based on nonsmooth optimization techniques and a scalable implementation of this algorithm. We prove that the parallel algorithm has a provably fast runtime bound and executes correctly for a parallel random access machine (PRAM) computational model. We extend the PRAM algorithm to distributed memory computers and report results for two- and three-dimensional simplicial meshes that demonstrate the efficiency and scalability of this approach for a number of different test cases. We also examine the effect of different architectures on the parallel algorithm and present results for the IBM SP supercomputer and an ATM-connected network of SPARC Ultras.
引用
收藏
页码:2023 / 2040
页数:18
相关论文
共 24 条
[1]   Optimal point placement for mesh smoothing [J].
Amenta, N ;
Bern, M ;
Eppstein, D .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 30 (02) :302-322
[2]   A METHOD FOR THE IMPROVEMENT OF 3D SOLID FINITE-ELEMENT MESHES [J].
AMEZUA, E ;
HORMAZA, MV ;
HERNANDEZ, A ;
AJURIA, MBG .
ADVANCES IN ENGINEERING SOFTWARE, 1995, 22 (01) :45-53
[3]  
[Anonymous], FRONTIERS APPL MATH
[4]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[5]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[6]   Mesh smoothing using a posteriori error estimates [J].
Bank, RE ;
Smith, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :979-997
[7]  
Canann S. A., 1993, Finite Elements in Analysis and Design, V13, P185, DOI 10.1016/0168-874X(93)90056-V
[8]  
de l'Isle E. B., 1995, MODELING MESH GENERA, P97
[9]  
Edelsbrunner H, 1996, ALGORITHMICA, V15, P223, DOI 10.1007/BF01975867
[10]   LAPLACIAN SMOOTHING AND DELAUNAY TRIANGULATIONS [J].
FIELD, DA .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (06) :709-712