Diffusive growth of a polymer layer by in situ polymerization

被引:44
作者
Wittmer, JP
Cates, ME
Johner, A
Turner, MS
机构
[1] CAVENDISH LAB,CAMBRIDGE CB3 0HE,ENGLAND
[2] INST CHARLES SADRON,F-67083 STRASBOURG,FRANCE
来源
EUROPHYSICS LETTERS | 1996年 / 33卷 / 05期
关键词
D O I
10.1209/epl/i1996-00347-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the growth of a polymer layer on a fiat surface in a good solvent by in situ polymerization. This is viewed as a modified form of diffusion-limited aggregation without branching. We predict theoretically the formation of a pseudo-brush with density phi(z) proportional to z(-2/3) and characteristic height H proportional to t(3). These results are found by combining a mean-field treatment of the diffusive growth (marginally valid in three dimensions) with a scaling theory (Flory exponent nu = 3/5) of the growing polymers. We confirm their validity by Monte Carlo simulations.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 18 条
[1]   DIFFUSION-CONTROLLED AGGREGATION IN THE CONTINUUM APPROXIMATION [J].
BALL, R ;
NAUENBERG, M ;
WITTEN, TA .
PHYSICAL REVIEW A, 1984, 29 (04) :2017-2020
[2]   THE BOND FLUCTUATION METHOD - A NEW EFFECTIVE ALGORITHM FOR THE DYNAMICS OF POLYMERS IN ALL SPATIAL DIMENSIONS [J].
CARMESIN, I ;
KREMER, K .
MACROMOLECULES, 1988, 21 (09) :2819-2823
[3]  
CATESME, 1986, PHYS REV A, V36, P5007
[4]  
De Gennes P.-G., 1979, SCALING CONCEPTS POL
[5]   INTERDIFFUSION AND SELF-DIFFUSION IN POLYMER MIXTURES - A MONTE-CARLO STUDY [J].
DEUTSCH, HP ;
BINDER, K .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (03) :2294-2304
[6]   IRREVERSIBLE ADSORPTION OF A CONCENTRATED POLYMER-SOLUTION [J].
GUISELIN, O .
EUROPHYSICS LETTERS, 1992, 17 (03) :225-230
[7]  
HALPERIN A, 1992, ADV POLYM SCI, V100, P31
[8]   DYNAMICS OF POLYMERIC BRUSHES - END EXCHANGE AND BRIDGING KINETICS [J].
JOHNER, A ;
JOANNY, JF .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1647-1658
[9]   SOLUTIONS TO THE MEAN-FIELD EQUATIONS OF BRANCHLESS DIFFUSION-LIMITED AGGREGATION [J].
KASSNER, K .
PHYSICAL REVIEW A, 1990, 42 (06) :3637-3640
[10]   LAPLACIAN NEEDLE GROWTH [J].
KRUG, J ;
KASSNER, K ;
MEAKIN, P ;
FAMILY, F .
EUROPHYSICS LETTERS, 1993, 24 (07) :527-532