The mitochondrial production of reactive oxygen species: Mechanisms and implications in human pathology

被引:431
作者
Lenaz, G [1 ]
机构
[1] Univ Bologna, Dipartimento Biochim G Moruzzi, I-40126 Bologna, Italy
关键词
Mitochondria; reactive oxygen species; Complex I; Complex III; coenzyme p;
D O I
10.1080/15216540152845957
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are major sources of reactive oxygen species (ROS); the main sites of superoxide radical production in the respiratory chain are Complexes III and I; however, other mitochondrial enzymes, such as Complex II, glycerol-1-phosphate dehydrogenase, and dihydroorotate dehydrogenase, are also involved in production of ROS. ROS appear to be released both in the matrix and in the intermembrane space; however, their appearance outside the mitochondria may not be physiologically relevant. ROS production is increased in State 4 and in all conditions when the respiratory components are substantially in the reduced form. Accordingly, defects inducing decrease of electron transfer in the respiratory chain, as in many pathological conditions, are bound to enhance ROS production.
引用
收藏
页码:159 / 164
页数:6
相关论文
共 46 条
[1]   Mitochondrial oxygen radical generation and leak: Sites of production in state 4 and 3, organ specificity, and relation to aging and longevity [J].
Barja, G .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1999, 31 (04) :347-366
[2]   Titrating the effects of mitochondrial complex I impairment in the cell physiology [J].
Barrientos, A ;
Moraes, CT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16188-16197
[3]   EXTRAMITOCHONDRIAL RELEASE OF HYDROGEN-PEROXIDE FROM INSECT AND MOUSE-LIVER MITOCHONDRIA USING THE RESPIRATORY INHIBITORS PHOSPHINE, MYXOTHIAZOL, AND ANTIMYCIN AND SPECTRAL-ANALYSIS OF INHIBITED CYTOCHROMES [J].
BOLTER, CJ ;
CHEFURKA, W .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1990, 278 (01) :65-72
[4]   CELLULAR PRODUCTION OF HYDROGEN-PEROXIDE [J].
BOVERIS, A ;
CHANCE, B ;
OSHINO, N .
BIOCHEMICAL JOURNAL, 1972, 128 (03) :617-&
[5]   Uncoupling to survive? The role of mitochondrial inefficiency in ageing [J].
Brand, MD .
EXPERIMENTAL GERONTOLOGY, 2000, 35 (6-7) :811-820
[6]   PRODUCTION OF SUPEROXIDE RADICALS AND HYDROGEN-PEROXIDE BY NADH-UBIQUINONE REDUCTASE AND UBIQUINOL-CYTOCHROME C REDUCTASE FROM BEEF-HEART MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A ;
RAGAN, CI ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1977, 180 (02) :248-257
[7]   Communication -: Superoxide in apoptosis -: Mitochondrial generation triggered by cytochrome c loss [J].
Cai, JY ;
Jones, DP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (19) :11401-11404
[8]   Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation [J].
Cocco, T ;
Di Paola, M ;
Papa, S ;
Lorusso, M .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 27 (1-2) :51-59
[9]   MODELING THE EFFECTS OF AGE-RELATED MTDNA MUTATION ACCUMULATION - COMPLEX-I DEFICIENCY, SUPEROXIDE AND CELL-DEATH [J].
CORTOPASSI, G ;
WANG, E .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1995, 1271 (01) :171-176
[10]  
DAVIES KJA, 1986, J BIOL CHEM, V261, P3060