Cytosolic and membrane-bound cerebral nitric oxide synthase activity during hypoxia in cortical tissue of newborn piglets

被引:20
作者
Groenendaal, F
Mishra, OP
McGowan, JE
Hoffman, DJ
DelivoriaPapadopoulos, M
机构
[1] UNIV PENN,SCH MED,DEPT PHYSIOL,PHILADELPHIA,PA 19104
[2] WILHELMINA CHILDRENS HOSP,DEPT NEONATOL,3512 LK UTRECHT,NETHERLANDS
关键词
nitric oxide synthase; isoforms; hypoxia; neonate; brain; piglet;
D O I
10.1016/S0304-3940(96)12441-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To determine the role of nitric oxide production during hypoxia, the presence of two forms of neuronal nitric oxide synthase, cytosolic (cNOS) and membrane-bound (memNOS), in cortical tissue of newborn piglets and the effects of hypoxia on the activity of these enzymes were studied. Experiments were performed in 12 anesthetized and ventilated Yorkshire piglets, 2-4 days of age. Hypoxia was induced by decreasing the FiO(2) to 0.07. The control group was ventilated maintaining normoxia. After 1 h of normoxic or hypoxic ventilation brain tissue was removed and frozen immediately in liquid nitrogen. Tissue hypoxia was confirmed by analysis of adenosine triphosphate (ATP) and phosphocreatine (PCr): ATP was reduced to 52% and PCr to 28% of control values, cNOS activity was 35.3 +/- 13.7 pmol/mg protein per min in the control group and 28.3 +/- 7.0 in the hypoxia group; memNOS activity was 10.5 +/- 4.5 and 12.0 +/- 3.9 pmol/mg protein per min in the control and hypoxia groups, respectively. Differences in cNOS and memNOS activity between control and hypoxic animals were not significant. The results indicate that both cNOS and memNOS are present in cortical tissue of newborn piglets and that the activity is unaffected by 1 h of tissue hypoxia. We suggest that production of nitric oxide and its derivative peroxynitrite during hypoxia may therefore be a potential mechanism for hypoxia-induced brain cell membrane lipid peroxidation.
引用
收藏
页码:121 / 124
页数:4
相关论文
共 29 条
[1]  
ANDERSEN CB, 1995, PEDIATR RES, V37, pA41
[2]  
BECKMAN JS, 1991, J DEV PHYSIOL, V15, P53
[3]   LOCALIZATION OF NITRIC-OXIDE SYNTHASE INDICATING A NEURAL ROLE FOR NITRIC-OXIDE [J].
BREDT, DS ;
HWANG, PM ;
SNYDER, SH .
NATURE, 1990, 347 (6295) :768-770
[4]   NITRIC-OXIDE SYNTHASE PROTEIN AND MESSENGER-RNA ARE DISCRETELY LOCALIZED IN NEURONAL POPULATIONS OF THE MAMMALIAN CNS TOGETHER WITH NADPH DIAPHORASE [J].
BREDT, DS ;
GLATT, CE ;
HWANG, PM ;
FOTUHI, M ;
DAWSON, TM ;
SNYDER, SH .
NEURON, 1991, 7 (04) :615-624
[5]   ISOLATION OF NITRIC-OXIDE SYNTHETASE, A CALMODULIN-REQUIRING ENZYME [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :682-685
[6]  
BURKE RE, 1994, J NEUROCHEM, V62, P1878
[7]   A NOVEL NEURONAL MESSENGER MOLECULE IN BRAIN - THE FREE-RADICAL, NITRIC-OXIDE [J].
DAWSON, TM ;
DAWSON, VL ;
SNYDER, SH .
ANNALS OF NEUROLOGY, 1992, 32 (03) :297-311
[8]  
DIGIACOMO JE, 1992, BIOL NEONATE, V61, P25, DOI 10.1159/000243527
[9]   ENDOTHELIAL NITRIC-OXIDE SYNTHASE LOCALIZED TO HIPPOCAMPAL PYRAMIDAL CELLS - IMPLICATIONS FOR SYNAPTIC PLASTICITY [J].
DINERMAN, JL ;
DAWSON, TM ;
SCHELL, MJ ;
SNOWMAN, A ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (10) :4214-4218
[10]   NITRIC-OXIDE SYNTHASE - IRREVERSIBLE INHIBITION BY L-NG-NITROARGININE IN BRAIN INVITRO AND INVIVO [J].
DWYER, MA ;
BREDT, DS ;
SNYDER, SH .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 176 (03) :1136-1141