Domain analysis of Kv6.3, an electrically silent channel

被引:26
作者
Ottschytsch, N [1 ]
Raes, AL [1 ]
Timmermans, JP [1 ]
Snyders, DJ [1 ]
机构
[1] Univ Antwerp, Dept Biomed Sci, CDE, Lab Mol Biophys Physiol & Pharmacol, B-2610 Antwerp, Belgium
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 568卷 / 03期
关键词
D O I
10.1113/jphysiol.2005.090142
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The subunit Kv6.3 encodes a voltage-gated potassium channel belonging to the group of electrically silent Kv subunits, i.e. subunits that do not form functional homotetrameric channels. The lack of current, caused by retention in the endoplasmic reticulum (ER), was overcome by coexpression with Kv2.1. To investigate whether a specific section of Kv6.3 was responsible for ER retention, we constructed chimeric subunits between Kv6.3 and Kv2.1, and analysed their subcellular localization and functionality. The results demonstrate that the ER retention of Kv6.3 is not caused by the N-terminal A and B box (NAB) domain nor the intracellular N- or C-termini, but rather by the S1-S6 core protein. Introduction of individual transmembrane segments of Kv6.3 in Kv2.1 was tolerated, with the exception of S6. Indeed, introduction of the S6 domain of Kv6.3 in Kv2.1 was enough to cause ER retention, which was due to the C-terminal section of S6. The S4 segment of Kv6.3 could act as a voltage sensor in the Kv2.1 context, albeit with a major hyperpolarizing shift in the voltage dependence of activation and inactivation, apparently caused by the presence of a tyrosine in Kv6.3 instead of a conserved arginine. This study suggests that the silent behaviour of Kv6.3 is largely caused by the C-terminal part of its sixth transmembrane domain that causes ER retention of the subunit.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 50 条
[1]   Myocardial potassium channels: Electrophysiological and molecular diversity [J].
Barry, DM ;
Nerbonne, JM .
ANNUAL REVIEW OF PHYSIOLOGY, 1996, 58 :363-394
[2]  
BENNDORF K, 1994, J PHYSIOL-LONDON, V477, P1
[3]   The voltage sensor in voltage-dependent ion channels [J].
Bezanilla, F .
PHYSIOLOGICAL REVIEWS, 2000, 80 (02) :555-592
[4]   The S4-S5 linker couples voltage sensing and activation of pacemaker channels [J].
Chen, J ;
Mitcheson, JS ;
Tristani-Firouzi, M ;
Lin, M ;
Sanguinetti, MC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11277-11282
[5]   A NEW SUBUNIT OF THE CYCLIC NUCLEOTIDE-GATED CATION CHANNEL IN RETINAL RODS [J].
CHEN, TY ;
PENG, YW ;
DHALLAN, RS ;
AHAMED, B ;
REED, RR ;
YAU, KW .
NATURE, 1993, 362 (6422) :764-767
[6]   Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels - Molecular coupling between the S4-S5 and C-linkers [J].
Decher, N ;
Chen, J ;
Sanguinetti, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (14) :13859-13865
[7]   Blocker protection in the pore of a voltage-gated K+ channel and its structural implications [J].
del Camino, D ;
Holmgren, M ;
Liu, Y ;
Yellen, G .
NATURE, 2000, 403 (6767) :321-325
[8]  
DREWE JA, 1992, J NEUROSCI, V12, P538
[9]   HETEROLOGOUS MULTIMERIC ASSEMBLY IS ESSENTIAL FOR K+ CHANNEL ACTIVITY OF NEURONAL AND CARDIAC G-PROTEIN-ACTIVATED INWARD RECTIFIERS [J].
DUPRAT, F ;
LESAGE, F ;
GUILLEMARE, E ;
FINK, M ;
HUGNOT, JP ;
BIGAY, J ;
LAZDUNSKI, M ;
ROMEY, G ;
BARHANIN, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 212 (02) :657-663
[10]   COPI in ER/Golgi and intra-Golgi transport: do yeast COPI mutants point the way? [J].
Gaynor, EC ;
Graham, TR ;
Emr, SD .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1998, 1404 (1-2) :33-51