Multicolor cavity metrology

被引:22
作者
Izumi, Kiwamu [2 ]
Arai, Koji [1 ]
Barr, Bryan [3 ]
Betzwieser, Joseph [4 ]
Brooks, Aidan [1 ]
Dahl, Katrin [5 ,6 ]
Doravari, Suresh [1 ]
Driggers, Jennifer C. [1 ]
Korth, W. Zach [1 ]
Miao, Haixing [1 ]
Rollins, Jameson [1 ]
Vass, Stephen [1 ]
Yeaton-Massey, David [1 ]
Adhikari, Rana X. [1 ]
机构
[1] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[2] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan
[3] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
[4] LIGO Livingston Observ, Livingston, LA 70754 USA
[5] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany
[6] Leibniz Univ Hannover, D-30167 Hannover, Germany
基金
美国国家科学基金会;
关键词
2ND-HARMONIC GENERATION; LOCK ACQUISITION; STABILIZATION; NOISE; LIGO;
D O I
10.1364/JOSAA.29.002092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Long-baseline laser interferometers used for gravitational-wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by 4 orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational-wave detectors. The possibility for using multicolor techniques to overcome current quantum and thermal noise limits is also discussed. (c) 2012 Optical Society of America
引用
收藏
页码:2092 / 2103
页数:12
相关论文
共 32 条
[1]   LIGO: the Laser Interferometer Gravitational-Wave Observatory [J].
Abbott, B. P. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Behnke, B. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, J. K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Bridges, D. O. .
REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
[2]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[3]   Lock acquisition of the Virgo gravitational wave detector [J].
Acernese, F. ;
Alshourbagy, M. ;
Amico, P. ;
Antonucci, F. ;
Aoudia, S. ;
Arun, K. G. ;
Astone, P. ;
Avino, S. ;
Baggio, L. ;
Ballardin, G. ;
Barone, F. ;
Barsotti, L. ;
Barsuglia, M. ;
Bauer, Th. S. ;
Bigotta, S. ;
Birindelli, S. ;
Bizouard, M. A. ;
Boccara, C. ;
Bondu, F. ;
Bosi, L. ;
Braccini, S. ;
Bradaschia, C. ;
Brillet, A. ;
Brisson, V. ;
Buskulic, D. ;
Cagnoli, G. ;
Calloni, E. ;
Campagna, E. ;
Carbognani, F. ;
Cavalier, F. ;
Cavalieri, R. ;
Cella, G. ;
Cesarini, E. ;
Chassande-Mottin, E. ;
Chatterji, S. ;
Cleva, F. ;
Coccia, E. ;
Corda, C. ;
Corsi, A. ;
Cottone, F. ;
Coulon, J. -P. ;
Cuoco, E. ;
D'Antonio, S. ;
Dari, A. ;
Dattilo, V. ;
Davier, M. ;
De Rosa, R. ;
Del Prete, M. ;
Di Fiore, L. ;
Di Lieto, A. .
ASTROPARTICLE PHYSICS, 2008, 30 (01) :29-38
[4]   Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer [J].
Aso, Y ;
Ando, M ;
Kawabe, K ;
Otsuka, S ;
Tsubono, K .
PHYSICS LETTERS A, 2004, 327 (01) :1-8
[5]   Signal recycled laser-interferometer gravitational-wave detectors as optical springs [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2002, 65 (04)
[6]   Guided lock acquisition in a suspended Fabry-Perot cavity [J].
Camp, J ;
Sievers, L ;
Rolf, B ;
Heefner, J .
OPTICS LETTERS, 1995, 20 (24) :2463-2465
[7]   LASER PHASE AND FREQUENCY STABILIZATION USING AN OPTICAL-RESONATOR [J].
DREVER, RWP ;
HALL, JL ;
KOWALSKI, FV ;
HOUGH, J ;
FORD, GM ;
MUNLEY, AJ ;
WARD, H .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 31 (02) :97-105
[8]   Lock acquisition of a gravitational-wave interferometer [J].
Evans, M ;
Mavalvala, N ;
Fritschel, P ;
Bork, R ;
Bhawal, B ;
Gustafson, R ;
Kells, W ;
Landry, M ;
Sigg, D ;
Weiss, R ;
Whitcomb, S ;
Yamamoto, H .
OPTICS LETTERS, 2002, 27 (08) :598-600
[9]   Thermo-optic noise in coated mirrors for high-precision optical measurements [J].
Evans, M. ;
Ballmer, S. ;
Fejer, M. ;
Fritschel, P. ;
Harry, G. ;
Ogin, G. .
PHYSICAL REVIEW D, 2008, 78 (10)
[10]  
Fritschel P., 2009, T0900095V2 LIGO DCC