Iterative method for solving nonlinear integral equations describing rolling solutions in string theory

被引:34
作者
Joukovskaya, LV [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
string theory; nonlinear integral equation; iterative method;
D O I
10.1007/s11232-006-0043-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a nonlinear integral equation with infinitely many derivatives that appears when a system of interacting open and closed strings is investigated if the nonlocality in the closed string sector is neglected. We investigate the properties of this equation, construct all iterative method for solving it, and prove that the method converges.
引用
收藏
页码:335 / 342
页数:8
相关论文
共 18 条
[1]  
Aref'eva IY, 2003, J HIGH ENERGY PHYS
[2]   Rolling tachyon in NS string field theory [J].
Aref'eva, IY .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (7-8) :652-657
[3]   P-ADIC NUMBERS IN PHYSICS [J].
BREKKE, L ;
FREUND, PGO .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 233 (01) :1-66
[4]   NON-ARCHIMEDEAN STRING DYNAMICS [J].
BREKKE, L ;
FREUND, PGO ;
OLSON, M ;
WITTEN, E .
NUCLEAR PHYSICS B, 1988, 302 (03) :365-402
[5]  
FIKHENGOLTS GM, 2002, FDN CALCULUS
[6]   EFFECTIVE SCALAR FIELD-THEORY OF P-ADIC STRING [J].
FRAMPTON, PH ;
OKADA, Y .
PHYSICAL REVIEW D, 1988, 37 (10) :3077-3079
[7]  
JOUKOVSKAYA L, MATHPH0308034, P9
[8]  
JOUKOVSKAYA L, 2004, P STEKLOV I MATH, V245, P98
[9]  
Kolmogorov A. N., 1976, Elements of the theory of functions and functional analysis
[10]  
Moeller N, 2004, J HIGH ENERGY PHYS