A new approach to intelligent fault diagnosis of rotating machinery

被引:293
作者
Lei, Yaguo [1 ]
He, Zhengjia [1 ,2 ]
Zi, Yanyang [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Mech Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
feature selection; superior feature; improved distance evaluation technique; adaptive neuro-fuzzy inference system; fault diagnosis;
D O I
10.1016/j.eswa.2007.08.072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach to intelligent fault diagnosis based on statistics analysis, an improved distance evaluation technique and adaptive neuro-fuzzy inference system (ANFIS). The approach consists of three stages. First, different features, including time-domain statistical characteristics, frequency-domain statistical characteristics and empirical mode decomposition (EMD) energy entropies, are extracted to acquire more fault characteristic information. Second, an improved distance evaluation technique is proposed, and with it, the most superior features are selected from the original feature set. Finally, the most superior features are fed into ANFIS to identify different abnormal cases. The proposed approach is applied to fault diagnosis of rolling element bearings, and testing results show that the proposed approach can reliably recognise different fault categories and severities. Moreover, the effectiveness of the proposed feature selection method is also demonstrated by the testing results. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1593 / 1600
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2020, BEARINGS VIBRATION D
[2]   An approach to fault diagnosis of vacuum cleaner motors based on sound analysis [J].
Benko, U ;
Petrovcic, J ;
Juricic, D ;
Tavcar, J ;
Rejec, J .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (02) :427-445
[3]   Towards automatic detection of local bearing defects in rotating machines [J].
Ericsson, S ;
Grip, N ;
Johansson, E ;
Persson, LE ;
Sjöberg, R ;
Strömberg, JO .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (03) :509-535
[4]   A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro-fuzzy inference systems [J].
Gulbag, A ;
Temurtas, F .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 115 (01) :252-262
[5]   Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients [J].
Güler, I ;
Übeyli, ED .
JOURNAL OF NEUROSCIENCE METHODS, 2005, 148 (02) :113-121
[6]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[7]   Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms [J].
Jack, LB ;
Nandi, AK .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2002, 16 (2-3) :373-390
[8]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685
[9]   A review on machinery diagnostics and prognostics implementing condition-based maintenance [J].
Jardine, Andrew K. S. ;
Lin, Daming ;
Banjevic, Dragan .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (07) :1483-1510
[10]   Symbolic analysis of chaotic signals and turbulent fluctuations [J].
Lehrman, M ;
Rechester, AB ;
White, RB .
PHYSICAL REVIEW LETTERS, 1997, 78 (01) :54-57