Non-invasive classification of cortical activities for Brain Computer Interface: A variable selection approach

被引:4
作者
Besserve, Michel [1 ]
Martinerie, Jacques [1 ]
Garnero, Line [1 ]
机构
[1] CNRS, UPR LENA 640, Lab Neurosci Cognit & Imagerie Cerebrale, Paris, France
来源
2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4 | 2008年
关键词
EEG; inverse problem; Brain Computer Interface; Support Vector Machine;
D O I
10.1109/ISBI.2008.4541183
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose to carry out a classification method for electro-encephalographic signals (EEG), using the activities of cortical sources estimated with an EEG inverse problem. To overcome the difficulties caused by the high number of sources (approximately 10000), we use a multivariate variable selection algorithm: the zero norm Support Vector Machine (L0-SVM). This technique allows to extract a small subset of sources, which are the most useful to allow for the discrimination of the mental states. The whole approach is applied to an asynchronous Brain Computer Interface (BCI) experiment from our lab. It outperforms a method based on the direct measurement of EEG electrodes' activities.
引用
收藏
页码:1063 / +
页数:2
相关论文
共 6 条
[1]   A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem [J].
Baillet, S ;
Garnero, L .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (05) :374-385
[2]   Electromagnetic brain mapping [J].
Baillet, S ;
Mosher, JC ;
Leahy, RM .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :14-30
[3]   Rapidly recomputable EEG forward models for realistic head shapes [J].
Ermer, JJ ;
Mosher, JC ;
Baillet, S ;
Leahy, RM .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (04) :1265-1281
[4]  
Guyon I, 2003, J MACH LEARN RES, P1157, DOI [10.1016/j.aca.2011.07.027, DOI 10.1016/J.ACA.2011.07.027]
[5]  
Vapnik V., 1998, STAT LEARNING THEORY, V1, P2
[6]  
Weston J., 2003, Journal of Machine Learning Research, V3, P1439, DOI 10.1162/153244303322753751