Fast alignment using rotation vector and adaptive Kalman filter

被引:46
作者
Ahn, HS [1 ]
Won, CH
机构
[1] Utah State Univ, Dept Elect Engn, Logan, UT 84322 USA
[2] Temple Univ, Dept Elect & Comp Engn, Philadelphia, PA 19122 USA
[3] Univ N Dakota, Grand Forks, ND 58201 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1109/TAES.2006.1603406
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A fast and convenient alignment method is proposed. To improve the speed of convergence, we used rotation vectors instead of traditional Euler angles. Furthermore, we developed an algorithm to automatically tune the measurement noise covariance matrix using adaptive Kalman filtering. Finally, the developed algorithms were applied to an aerial imaging system to automatically geo-locate the centers of the images.
引用
收藏
页码:70 / 83
页数:14
相关论文
共 39 条
[1]  
Ahn HS, 2003, P AMER CONTR CONF, P4403
[2]   REDUCED-ORDER KALMAN FILTER FOR ALIGNMENT [J].
ARANDA, J ;
DELACRUZ, JM ;
DORMIDO, S ;
RUIPEREZ, P ;
HERNANDEZ, R .
CYBERNETICS AND SYSTEMS, 1994, 25 (01) :1-16
[3]  
BAZIW J, 1972, IEEE T AEROSPACE ELE, V8
[4]  
BORTZ JE, 1971, IEEE T AEROSPACE ELE, V7
[5]  
Britting K. R., 1971, Inertial Navigation Systems Analysis
[6]  
BROWN R. G., 2012, INTRO RANDOM SIGNALS
[7]  
DAI L, 2000, P 13 INT TECHN M SAT, P1071
[8]  
DAKSHAYANI BD, 2001, SAT PERF WORKSH LAUR
[9]  
FANG JC, 1996, IEEE T AEROSPACE ELE, V32
[10]  
Farrell J., 1998, GLOBAL POSITIONING S